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Preface

0.1 Why This Guide Exists

In 1994, a single floating-point division bug cost Intel $475 million. The Pentium FDIV error slipped
past traditional testing because exhaustive checking was impossible — billions of input combinations
existed. After that expensive lesson, Intel turned to formal verification, and Binary Decision
Diagrams became essential infrastructure.

BDDs are one of computer science’s quiet success stories. They power hardware verification at Intel,
AMD, and every major chip manufacturer. They enable SAT solvers to prune search spaces. They verify
protocols, validate configurations, and solve combinatorial puzzles. Yet despite their importance, good
learning resources are scarce.

This guide fills that gap. Whether you are a student encountering formal methods for the first time, an
engineer building verification tools, or a researcher pushing the boundaries of symbolic computation,
you will find what you need here.

0.2 What You Will Learn

By working through this guide, you will understand:

« Theory: The mathematical foundations — Boolean algebra, Shannon expansion, the canonicity
theorem that makes BDDs magical.

« Implementation: How to build an efficient BDD library from scratch, including data structures,
algorithms, and the non-obvious engineering decisions.

« Applications: Where BDDs shine — model checking, configuration management, combinatorial
optimization — and where they struggle.

+ Trade-offs: When to reach for BDDs versus SAT solvers, and how design choices (variable
ordering, complement edges, caching strategies) affect performance by orders of magnitude.

0.3 How to Read This Guide

There is no single “right” path. Choose based on your goals:
Path 1: Theory First

Read Part I thoroughly, then Part II. Build understanding from first principles. Best for students and
those who want the complete picture.

Path 2: Implementation Focus

Skim Part I for notation, dive into Part II. Reference Part IIl when you hit advanced techniques. Best
for engineers building BDD-based systems.

Path 3: Application-Driven

Start with Part IV to see BDDs solving real problems. Backtrack to earlier parts when curiosity strikes.
Best for practitioners with specific use cases in mind.
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Path 4: Comparative Analysis

Jump to Part V for the lay of the land. Use earlier chapters as reference material. Best for those
evaluating BDD libraries or architectural approaches.

0.4 The bdd-rs Library

This guide accompanies bdd-rs, a BDD library written in Rust. The code examples use Rust syntax,
but the concepts are universal — they apply to CUDD, BuDDy, or any BDD implementation.

use bdd_rs::bdd::Bdd;

let bdd = Bdd::default();

let x = bdd.mk_var(l);
let y = bdd.mk_var(2);
let f = bdd.apply_and(x, -y); // f = x A -y

// 0(1) checks after construction
assert!(!bdd.is_zero(f)); // Satisfiable
assert!(!bdd.is_one(f)); // Not a tautology

0.5 A Note on Style

This guide prioritizes understanding over encyclopedic coverage. When a choice exists between
being comprehensive and being clear, clarity wins.

You will find:
« Diagrams that visualize concepts
+ Code that shows how ideas become implementations
« Examples that ground abstractions in concrete problems
- Insights that explain why, not just how

0.6 Acknowledgments

BDDs emerged from decades of research, starting with Lee’s 1959 work on decision programs and
crystallizing in Bryant’s landmark 1986 paper. This guide builds on that foundation and on the practical
wisdom embodied in libraries like CUDD, BuDDy, and Sylvan.

We thank the formal methods community for creating such a rich field to explore.
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Chapter 1

Introduction

Imagine you could represent any Boolean formula — no matter how complex — as a compact diagram
where checking if two formulas are equivalent takes a single pointer comparison. Where determining
satisfiability requires examining just one node. Where counting all solutions is a single traversal.

This is the promise of Binary Decision Diagrams.

Since their refinement in the 1980s, BDDs have become one of computer science’s most elegant success
stories. They enabled Intel to verify microprocessors before fabrication, catching bugs that would
have cost billions. They power configuration tools that validate millions of product combinations in
milliseconds. They form the foundation of symbolic model checking — a technique so impactful that
it earned its inventors the Turing Award.

This chapter takes you on a journey from the fundamental challenge of Boolean reasoning to the
elegant solution that BDDs provide.

1.1 The Challenge of Boolean Reasoning

Boolean functions hide in plain sight. Every if statement in your code. Every logic gate in a processor.
Every constraint in a configuration system. Every rule in a firewall policy.

The ubiquity of Boolean logic makes reasoning about it essential — and surprisingly difficult.

1.1.1 A Deceptively Simple Question

Consider this innocent-looking question:

\. Example — The Equivalence Puzzle

Are these two formulas the same function?
f=(@Ab)V(aAnc)V (bAc) (1)
g=(aVbA(aVe)A(bVe) (2)
Take a moment to think about it.

With just three variables, you could check all 23 = 8 input combinations. But what if there were
100 variables? A million?
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The brute-force approach hits a wall. With n variables, you face 2™ possible inputs — more than atoms

in the universe for n > 260.

This exponential blowup is not a failure of imagination. Boolean satisfiability (SAT) is NP-complete.
Equivalence checking is co-NP-complete. Unless P = NP, no shortcut exists for the general case.

And yet, engineers verify circuits with thousands of variables every day. How?

1.1.2 The Power of Representation

The secret lies in choosing the right representation.

Think of Roman numerals versus decimal notation. Both can represent any number, but try multiplying
MCMXCIV by CDXLVIL The representation matters enormously.

For Boolean functions, most representations have crippling weaknesses:

« Truth tables are canonical (unique) but exponentially large
« CNF formulas are compact but checking equivalence is co-NP-complete
o Circuits are efficient to build but hard to analyze

BDDs hit a sweet spot: they are often compact and canonical and support efficient operations. When

they work, they work spectacularly well.

1.2 What is a BDD?

A Binary Decision Diagram is a way of drawing a Boolean function as a flowchart.

Reading the BDD:
@ Start at x (root)
h If z = 0: follow dashed line — 0
! ; Ifz=1:gotoy
N If y = 0: follow dashed — 0
N @ If y = 1: follow solid — 1
"
1

4
4
¥\
[o]
Figure 1: BDD for x A y: the function outputs 1 only when both inputs are 1.

Here is how to read a BDD:

Start at the root — the topmost circle

Check the variable — is it true (1) or false (0)?
Follow the edge — solid for true, dashed for false
Repeat until you reach a square terminal

The terminal’s value is your answer

SAEE N

The magic happens when you have structure sharing. Consider the function (z A y) V z:
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©

\

’
’
5 \ This sharing is the key to

@ BDD efficiency.
WY
[o]

Figure 2: BDD for (x A y) V z showing structure sharing.

Notice: both z nodes
share the same terminals.

€-------"

©

Without sharing, a decision tree for n variables needs up to 2" leaves. With sharing, a BDD often needs
far fewer nodes — sometimes polynomially many, sometimes even constant.

1.3 A Brief History

The story of BDDs is one of incremental insight building to breakthrough.

1.3.1 The Early Days (1959-1978)

In 1959, C. Y. Lee described “binary decision programs” for representing switching circuits — essen-
tially, BDDs before the name existed. His insight was that any Boolean function could be represented
as a binary tree of if-then-else decisions.

In 1978, S. B. Akers formalized the structure and coined the term “Binary Decision Diagram.” But
these early BDDs had a problem: the same function could be drawn in many different ways. Checking
if two BDDs represented the same function required expensive graph isomorphism tests.

1.3.2 The Bryant Revolution (1986)

The transformation came from Randal Bryant, then at Carnegie Mellon. His 1986 paper introduced
two deceptively simple restrictions:

1. Order the variables — every path from root to terminal encounters variables in the same
sequence

2. Reduce the diagram — merge identical subgraphs and eliminate redundant nodes

These constraints create Reduced Ordered Binary Decision Diagrams (ROBDDs), with a stunning
property:

¢ Key Insight

For a fixed variable ordering, every Boolean function has exactly one ROBDD.

This means: two functions are identical if and only if their BDDs are pointer-equal. Equivalence
checking becomes a single comparison.

Bryant also provided efficient algorithms for combining BDDs. Computing f A g or f V g takes time
proportional to |f| x |g| — the product of their sizes, not exponential in variables.
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1.3.3 The Verification Revolution (1987-1995)

The impact was immediate and profound.

In 1987, a team including Edmund Clarke (later a Turing Award recipient) demonstrated symbolic
model checking. They verified systems with 10?° states — astronomically beyond what explicit
enumeration could handle.

Hardware companies took notice. Intel began using BDD-based tools to verify processor designs. The
infamous Pentium FDIV bug of 1994 — which cost Intel $475 million — accelerated adoption of formal
verification. BDDs became essential infrastructure.

1.3.4 Maturity and Beyond (1995-Present)

By the mid-1990s, BDDs were a standard tool, but their limitations were better understood:

« Some functions (like integer multiplication) have exponentially large BDDs regardless of vari-
able ordering
« Finding the best variable ordering is itself NP-hard

« Memory usage can be unpredictable
These limitations spurred alternatives:

+ SAT solvers excel at finding single solutions quickly
- BDD variants like ZDDs handle sparse sets efficiently
« Hybrid methods combine the strengths of multiple approaches

Today, BDDs remain essential for problems requiring canonicity, counting, or symbolic state-space
exploration.

1.4 What Makes BDDs Special?

Three properties distinguish BDDs from other Boolean function representations:

1.4.1 Canonicity
For a fixed variable ordering, every Boolean function has exactly one reduced ordered BDD. This

property is powerful:

« Equivalence checking: Two BDDs represent the same function if and only if they are identical.
With hash consing, this reduces to pointer comparison: O(1).

« Satisfiability: A function is unsatisfiable if and only if its BDD is the O-terminal. This is also
O(1) after construction.

» Tautology checking: A function is a tautology if and only if its BDD is the 1-terminal.

No other compact representation offers these constant-time queries. Truth tables are canonical but
exponentially large. CNF and DNF are compact but non-canonical.

1.4.2 Efficient Operations
BDD operations have polynomial complexity in the sizes of the input BDDs:

Operation Complexity

Negation (with complement edges) O(1)
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Operation Complexity
AND, OR, XOR, etc. O(lf] - gl)
Equivalence check O(1)
Satisfiability check O(1)
Model counting O(|f)

The O(|f| - |g|) bound for binary operations comes from memoization: each pair of nodes from the
two BDDs is processed at most once.

1.4.3 Sharing

BDDs naturally share common subfunctions. When building f A g and f V g, the subgraph for f is
constructed once and reused. This sharing arises automatically from hash consing: before creating a
node, we check if an identical node already exists.

In a manager-centric implementation like bdd-rs, all BDDs share a single node pool. Memory is
proportional to the total number of distinct subfunctions, not the total number of BDDs.

1.5 When BDDs Work Well

BDDs excel when the Boolean function has structure that permits compact representation:

Sequential circuits and finite-state machines. Transition relations of digital circuits often have
small BDDs because related bits are tested together. State reachability can be computed symbolically,
avoiding enumeration of individual states.

Configuration constraints. Feature models and product line constraints typically yield manageable
BDDs. The hierarchical structure of features often suggests good variable orderings.

Symmetric and threshold functions. Functions like “at least k of m variables are true” have
polynomial-size BDDs. Many constraints arising in combinatorial problems have this form.

Problems requiring counting or enumeration. When you need to count satisfying assignments or
enumerate all solutions, BDDs shine. SAT solvers can find one solution quickly but struggle with all
solutions.

1.6 When BDDs Struggle

BDDs have well-known limitations:

Integer multiplication. The function “output bits of n-bit multiplier” requires exponential BDD size
regardless of variable ordering. This is not a limitation of the algorithm but a fundamental property of
the function.

Large unstructured problems. Random Boolean functions or problems without exploitable structure
tend to produce large BDDs.

Dynamic problems. If the optimal variable ordering changes as constraints are added, maintaining
good BDD size requires expensive reordering operations.
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Memory consumption. BDD operations can create many intermediate nodes. Without garbage
collection, memory can grow rapidly.

I\ No Silver Bullet

BDDs are not universally superior to SAT solvers or other techniques. The choice depends on
the problem structure and the queries needed. For single satisfiability queries on large formulas,
modern SAT solvers often win. For repeated queries, counting, or symbolic state-space explo-
ration, BDDs often win.

1.7 The bdd-rs Library

This guide accompanies bdd-rs, a BDD library written in Rust. Its design reflects lessons from decades
of BDD research:
use bdd_rs::bdd::Bdd;

// Create a BDD manager
let bdd = Bdd::default();

// Variables are 1-indexed

let x = bdd.mk_var(1);
let y = bdd.mk_var(2);
let z = bdd.mk_var(3);

// Build a formula: (X A y) v z
let f = bdd.apply_or(bdd.apply_and(x, y), z);

// Constant-time queries
assert!(!bdd.is_zero(f)); // satisfiable?
assert!(!bdd.is_one(f)); // tautology?

// Count solutions (8 total assignments, how many satisfy f?)
let count = bdd.sat_count(f, 3);
println!("Solutions: {}", count); // 5

Key design choices in bdd-rs:

« Manager-centric architecture: All operations go through the Bdd manager, ensuring hash
consing and canonical form.

« Complement edges: Negation is O(1), implemented as a single bit flip.

+ Type-safe handles: Ref is a 32-bit handle; accidental misuse is caught at compile time.

« Rust’s safety guarantees: Memory safety without garbage collector overhead.

1.8 Guide Overview

The remainder of this guide is organized as follows:

Part I establishes the theoretical foundations: Boolean functions, Shannon expansion, the formal BDD
definition, the canonicity theorem, and core algorithms.

Part II covers implementation: manager architecture, node representation, unique tables, the Apply
algorithm, caching, and complement edges.
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Part III explores advanced topics: variable ordering, garbage collection, quantification, and BDD
variants.

Part IV demonstrates applications: model checking, combinatorial problems, symbolic execution, and
configuration management.

Part V surveys the ecosystem: library comparisons, design trade-offs, and future directions.

Each chapter builds on previous ones, but readers with specific interests can skip ahead using the
cross-references provided.
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Chapter 2

Boolean Functions

Before diving into BDDs, we need to establish the mathematical ground we’re standing on. This chapter
reviews Boolean algebra and introduces the key concepts — cofactors, Shannon expansion, and the
representation problem — that BDDs are designed to solve.

If you’re comfortable with Boolean algebra, skim to Section 2.3; that’s where the BDD story really
begins.

2.1 Boolean Algebra Foundations

2.1.1 The Boolean Domain

The Boolean domain B = {0, 1} contains exactly two values: false (0) and true (1). Everything in
Boolean computation reduces to these two primitives.

Definition (Boolean Function)
A Boolean function of n variables is a mapping f : B™ — B. Given n Boolean variables

Zy,Tq, ..., T,, the function f assigns a truth value to each of the 2" possible input combinations.

How many Boolean functions of n variables exist? Each function is determined by its output on 2"
inputs, and each output can be 0 or 1. Thus, there are exactly 22" distinct Boolean functions of n
variables.

Variables Inputs Functions

1 2 4

2 4 16

3 8 256

4 16 65,536

5 32 4.3 x 10°
10 1,024 ~ 1038

The explosive growth explains why naive enumeration is impractical. Even with 10 variables, there
are more Boolean functions than atoms in the observable universe.
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2.1.2 Basic Operations

The fundamental Boolean operations are:
Negation (NOT): —z flips the value.
-0=1, -1=0 (3)
Conjunction (AND): z A y is true when both operands are true.
rANy=1liffr=1andy=1 (4)
Disjunction (OR): x V y is true when at least one operand is true.
zVy=1liffz=1lory=1 (5)
Exclusive OR (XOR): z @ y is true when exactly one operand is true.
rdy=1iff x #£y (6)
Implication: x — y is false only when z is true and y is false.
x—=y=-xVy (7)
Equivalence (XNOR): z < y is true when both operands have the same value.

zoy=-(z0y) (8)

2.1.3 Algebraic Laws

Boolean algebra satisfies many useful identities:

Commutativity:
TANy=yAz, zVy=yVz 9)
Associativity:
(AyY)yANz=zAN(yAz), (xVy)Vz=zV(yVz) (10)
Distributivity:
zA(yVz)=(xAy)V(zAz) (11)
xV(yAz)=(xVy A(zV2) (12)
De Morgan’s Laws:
—(zAy)=—zV-y (13)
—(zVy)=—-zA—-y (14)
Absorption:
zA(xzVy) ==z, zV(zxAy ==z (15)
Complement:
xAN—-x=0, zV-x=1 (16)

These laws enable algebraic manipulation of Boolean expressions, but they do not directly solve the
representation problem.

10
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2.2 Representations of Boolean Functions

A Boolean function can be represented in many ways. Each representation has trade-offs in space,
canonicity, and operation efficiency.

2.2.1 Truth Tables

The most explicit representation lists the function’s output for every input:

“\. Example — Truth Table for XOR

T Y rTDYy
0 0 0
0 1 1
1 0 1
1 1 0

Truth tables are canonical — each function has exactly one truth table. Equivalence checking is
straightforward: compare tables entry by entry.

However, truth tables require 2" entries for n variables. This exponential size makes them impractical

for functions with more than about 20 variables.

2.2.2 Boolean Formulas
A Boolean formula is a syntactic expression using variables and operations:
f=(@ Azy) V (m2y Axs) (17)

Formulas can be compact, but they are non-canonical — many different formulas represent the same
function. For example, these all represent the same function:

zANy=yANz=-(-zV-y =(xV0)A(yV0) (18)
Checking formula equivalence requires reasoning about all possible simplifications, which is co-NP-

complete in general.

2.2.3 Normal Forms
Normal forms impose structure on Boolean formulas.
Disjunctive Normal Form (DNF): An OR of ANDs (sum of products).
f=(xy ANag) V (mzy Aag) V (25 A xg) (19)
Conjunctive Normal Form (CNF): An AND of ORs (product of sums).
f=(x1Vay) A(—zy Vag) A (zg V—ag) (20)

Normal forms are useful for specific algorithms (SAT solvers work on CNF), but they are still non-
canonical. The same function can have multiple DNF or CNF representations.

11
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¢ Key Insight

The representation dilemma:
« Truth tables are canonical but exponentially large.
« Formulas are compact but non-canonical.
« BDDs achieve canonicity with size often polynomial in practice.

2.3 Shannon Expansion

The key to BDDs is the Shannon expansion, which decomposes a function by “case splitting” on a

variable.

2.3.1 Cofactors

Definition (Cofactor)

The cofactor of f with respect to variable z, set to value b € {0, 1} is the function:
f|$1:b = f(ml,.--,m,i_17b, $’i+17""$n) (21)

We write f|, _, as the negative cofactor (or low cofactor) and f|, _; as the positive cofactor
(or high cofactor).

The cofactor f|, _, is the function f restricted to the case where z; has value b. It is a function of n —

1 variables (since z; is fixed).

.. Example — Computing Cofactors

Let f = (x Ay) V z. Then:

f|1: 0—(0/\y)Vz—z
floci=(1AAy)Vz=yVz
f\y 0—(w/\O)Vz—z
Sl = @A Vz=zVz

2.3.2 The Shannon Expansion Theorem

“., Theorem (Shannon Expansion)

Every Boolean function f(z, ..., z, ) can be decomposed with respect to any variable z,:

Equivalently, using the if-then-else notation:

12



BINARY DEcisiON DIAGRAMS Chapter 2.3.2

Shannon Expansion: f = ite(z, fi, f;)

0,

=0 r=1

=

“If z is true, evaluate f|,_;; otherwise evaluate f|,_,”

Figure 3: Shannon expansion decomposes f into two subfunctions based on a variable’s value.

Proof. Consider any assignment to the variables. If x; = 0, then -z, = 1 and the formula evaluates
to f|, _o, which equals f when z; = 0.1f z; = 1, then z; = 1 and the formula evaluates to f|, _;,
which equals f when x; = 1. In both cases, the formula equals f. O

The Shannon expansion has a natural interpretation: “if x, is true, then f |mi=1, else f |$¢=0‘”

2.3.3 Recursive Structure
Applying Shannon expansion recursively yields a decision tree:

1. Start with f.

2. Pick a variable x; and decompose: two subfunctions f|, _o and f|, _;.
3. For each subfunction, pick the next variable z, and decompose again.
4. Continue until reaching constant functions (0 or 1).

Decision Tree for f = x Ay

00 01 10 11

Figure 4: A decision tree for x A\ y has 2™ = 4 leaves — one for each input combination.

This produces a binary tree with 2" leaves, one for each input combination.

The key insight leading to BDDs: many subtrees are identical. If f|, _ , _; equals f[, _; , o, We
can share a single subtree for both. This sharing is what transforms exponential decision trees into
potentially compact BDDs.

13
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2.4 Function Equivalence

Two Boolean functions f and g are equivalent (written f = g) if they produce the same output on
every input:

f=giff Ve € B" : f(x) = g(x) (24)

2.4.1 The Equivalence Checking Problem
Given two representations of Boolean functions, determine if they represent the same function.
With truth tables: Compare entry by entry. Complexity: O(2™) time and space.

With formulas: In general, this is co-NP-complete. Even syntactically different formulas can repre-
sent the same function.

With BDDs (canonical): Compare pointers. If two BDDs are constructed in the same manager with
the same variable ordering, they represent the same function if and only if they are the same node.
Complexity: O(1).

¢ Key Insight

Canonicity transforms equivalence checking from a hard problem (co-NP-complete) into a trivial
one (O(1)). This is the fundamental reason BDDs are powerful for verification.

2.4.2 Why Equivalence Matters

Equivalence checking appears throughout computer science:

o Circuit verification: Does an optimized circuit compute the same function as the specification?
« Compiler optimization: Is the optimized code equivalent to the original?

+ Theorem proving: Are two logical formulas equivalent?

 Test generation: Does the implementation match the specification?

Any technique that makes equivalence checking efficient has broad applicability.

2.5 The Representation Problem

We have seen three representations:

Representation  Canonical? Space Equivalence
Truth table Yes o(2m) o(2")
Boolean formula No Variable ~ co-NP-complete
BDD (ROBDD) Yes Variable' O(1)

T BDD size ranges from constant (for simple functions) to exponential (for multiplication), but is often polynomial
for structured functions.

No representation is universally best. Truth tables guarantee polynomial-time operations but have
exponential space. Formulas can be compact but have hard equivalence checking. BDDs occupy a
middle ground: canonical representation with size that depends on the function’s structure.

14
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The BDD “gamble” is that many practical functions have compact BDDs. Decades of experience in
verification, synthesis, and optimization have shown this gamble often pays off — but not always.

2.5.1 Preview: The BDD Solution
In the next chapter, we define BDDs formally. The key ideas are:

1. Apply Shannon expansion with a fixed variable ordering,.
2. Share identical subfunctions (hash consing).
3. Eliminate redundant tests (where both branches lead to the same place).

These constraints yield the Reduced Ordered Binary Decision Diagram (ROBDD), which is
canonical for any fixed ordering. The challenge then becomes managing the variable ordering to keep
BDDs small — a topic we address in Section 12.

15
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Chapter 3

BDD Definition and Structure

In the previous chapter, we saw that Boolean functions can be represented in many ways. Shannon
expansion gives us a recursive decomposition, but naively applying it yields exponential-size decision
trees.

The breakthrough insight of BDDs is simple yet profound: share identical substructures. By
merging duplicate subtrees, we transform an exponential tree into a compact directed acyclic graph
(DAG).

3.1 From Decision Trees to Decision Diagrams

Let’s trace the evolution from trees to diagrams. This progression reveals why BDDs have the proper-
ties they do.

3.1.1 Decision Trees

A decision tree for a Boolean function f(z, ..., z,,) is a rooted binary tree where:
+ Each internal node is labeled with a variable x;
+ Each internal node has two children: low (for z; = 0) and high (for z; = 1)
» Each leaf is labeled with a Boolean constant (0 or 1)

To evaluate the function on an assignment, we start at the root and follow edges based on variable
values until reaching a leaf. The leaf’s label gives the function value.

“\. Example — Decision Tree for Majority

Consider the majority function Maj(z,y,2) = (x Ay) V (y A 2) V (z A z), which outputs 1
when at least two inputs are 1.

A decision tree testing variables in order x, y, 2 has:
 Root tests =
» Second level tests y (two nodes)
« Third level tests z (four nodes)
- Eight leaves with values based on majority

Even this simple function requires 22 — 1 = 7 internal nodes plus 8 leaves.

16
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The problem is clear: a decision tree for n variables has up to 2" leaves. This exponential growth makes
decision trees impractical for functions with many variables.

3.1.2 The Key Insight: Structure Sharing

The breakthrough comes from observing that decision trees contain redundancy. Many subtrees
compute the same subfunction and could be merged.

Consider evaluating Maj(z, y, z) when we have already fixed z = 0 and y = 1. The remaining function
is just z. Now consider fixing x = 1 and y = 0 — again, the remaining function is z. These two subtrees
are isomorphic; they compute the same thing.

¢ Key Insight

By merging isomorphic subtrees, we transform a tree into a DAG. The more structure a function
has, the more sharing is possible.

3.1.3 From Tree to DAG

The transformation from decision tree to decision diagram proceeds bottom-up:
1. Start with a decision tree
2. Identify leaves with the same value and merge them (yielding just two terminal nodes: 0 and 1)
3. Identify internal nodes with the same variable and same children — merge them
4. Repeat until no more merging is possible

This process is called reduction, and the resulting structure is a Binary Decision Diagram.

3.2 Binary Decision Diagrams

We now give the formal definition of BDDs and establish notation used throughout this guide.

Definition (Binary Decision Diagram)

A Binary Decision Diagram (BDD) is a rooted directed acyclic graph G = (V, E)) where:
« V =V, UV}, partitions into terminal and decision nodes
+ Terminal nodes V. = {0, 1} have no outgoing edges
+ Each decision node v € V}, is labeled with variable var(v) € {z, ..., x,,} and has exactly
two outgoing edges:
o low(v) € V: the low child (taken when var(v) = 0)
o high(v) € V: the high child (taken when var(v) = 1)
+ There is a distinguished root node r € V'

Definition (Semantics of BDDs)

A BDD with root r represents a Boolean function f, : B"™ — B defined recursively:

17
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0 ifo=0
fol@) =11 ifv=1 (25)
(x_z N flow(v) (w)) \ (xz A fhigh(v)(w)) if V&I‘(’U) =T

This is precisely Shannon expansion: f = Z; - f|wi=0 + ;- f|wi=1.

3.2.1 Graphical Conventions

Throughout this guide, we draw BDDs using standard conventions:
+ Decision nodes: Circles labeled with variable names
» Terminal nodes: Squares labeled 0 or 1 (sometimes drawn as 1 and T)
+ High edges: Solid lines (taken when variable is 1)
+ Low edges: Dashed lines (taken when variable is 0)
+ Variables at the same level are drawn at the same vertical position

3.3 Ordered BDDs (OBDDs)

BDDs become much more useful when we impose an ordering constraint on variables.

Definition (Variable Ordering)

A variable ordering is a total order 7 on the variables {z, ..., z,, }. We write 7, <, x; to mean

x,; comes before z; in the ordering.

Definition (Ordered BDD)

A BDD is ordered (OBDD) with respect to variable ordering 7 if on every path from the root to
a terminal, variables are encountered in increasing order according to .

Formally: for every decision node v with decision child u (either low or high), if both are decision

nodes, then var(v) <, var(u).

The ordering constraint has profound implications:
« Variables can be skipped on a path (if the function does not depend on them in that branch)
« Variables can never repeat on a path
+ The same variable appears at the same level throughout the BDD

i Why Ordering Matters

Without ordering, two BDDs for the same function could have completely different structures,
making comparison difficult. Ordering is the first step toward canonicity.

3.3.1 The Impact of Variable Ordering

Different orderings can yield dramatically different BDD sizes for the same function.

18
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“\. Example — Ordering Impact

Consider f = (z; Ay;) V (24 A ys), which is true when at least one (z;, y;) pair is both true.
With ordering z; < y; < x4 < y, (interleaved), the BDD has linear size in the number of pairs.
With ordering x; < x4 < y; < Y5 (grouped), the BDD can have exponential size.

The difference arises because interleaved ordering allows decisions about each pair to be made
together, while grouped ordering requires remembering partial information across many levels.

This sensitivity to ordering is both a strength and a weakness of BDDs:
« Strength: A good ordering can yield very compact representations
« Weakness: Finding optimal orderings is itself NP-hard

We discuss variable ordering heuristics in detail in Section 12.

3.4 Reduced BDDs (ROBDDs)

The final ingredient for canonicity is reduction — eliminating all redundancy.

Definition (Reduced Ordered BDD)

An OBDD is reduced (ROBDD) if it satisfies two properties:
1. No redundant tests: For every decision node v, we have low(v) # high(v)

2. No duplicate nodes: No two distinct nodes have the same variable, low child, and high
child

Equivalently: the BDD is maximally shared and contains no unnecessary nodes.

3.4.1 Reduction Rules

The two reduction properties correspond to two reduction rules:
Rule 1: Eliminate Redundant Tests

If a node v has low(v) = high(v) = u, then v is redundant. The function computed by visZ - f,, + x -
fu = [f.,independent of x. We can redirect all edges pointing to v to point to u instead, then remove v.

Rule 2: Merge Isomorphic Subgraphs

If two distinct nodes v and w have the same variable and children: var(v) = var(w), low(v) = low(w),
high(v) = high(w)

Then they compute the same function and can be merged. We keep one and redirect all edges to
the other.

Ok Algorithm: Reduction Procedure

To reduce an 0BDD:

19



Chapter 3.4.1

BINARY DEcCISION DIAGRAMS

1. Process nodes bottom-up (from terminals toward root)
2. For each node wv:
« If low(v) =high(v), replace v with its child (Rule 1)
e Otherwise, check if an equivalent node already exists; if so,

merge (Rule 2)
3. The result is a reduced 0BDD

3.4.2 The Unique Table

In practice, reduction is achieved by maintaining a unique table — a hash table that maps
(var,low, high) triples to nodes. When creating a node, we first check if it already exists. This ensures

duplicate nodes are never created in the first place.
The unique table is fundamental to BDD implementations and is covered in detail in Section 8.

3.5 Visual Examples

Let us see these concepts in action with concrete examples.

3.5.1 Example: Conjunction (z A y)

The function f(z,y) = = A y with ordering x < y:
« If x = 0: output is 0 regardless of y

o If x = 1: output is y
Evaluation paths:
A z = 0: — 0 (short-circuit)
! \ r=1y=0—=0
: r=ly=1—=1Vv
o Q
L] k4
' e
'l '¢ \
»~
[o]
Figure 5: ROBDD for z A y. The y-node is only reached when x = 1.
Notice that the y-node is only reached when x = 1, reflecting short-circuit evaluation. The BDD has

just 2 decision nodes — much smaller than the 22 = 4 leaves of a decision tree.

3.5.2 Example: Exclusive Or (z @ y)

The function f(z,y) = = @ y with ordering x < y:
o If x = 0: output is y
« If x = 1: output is ~y

20
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ywhenz =0 @ @ —ywhenz =1
A

Figure 6: ROBDD for x & y. Two y-nodes are needed because the subfunctions differ.
The ROBDD requires two y-nodes because y and —y are different functions. No reduction is possible
here — this is the minimal representation.
i XOR and Complement Edges

With complement edges (covered in Section 11), XOR can share structure with equivalence.
The left y-node becomes the right one with a complement marker, halving the size.

3.5.3 Example: Majority Function
The majority function Maj(z, y, z) outputs 1 when at least two inputs are 1:

Maj(z,y,2) = (x Ay)V (yAz)V (zAz) (26)

’,' : Subfunctions:
" z=0:needy A z
@ z=1l:needyVz

Both z-nodes share

I
I
E the same terminals!
) \
A 1 P L4
A )
A Y v . ' i
< l
[o]

Figure 7: ROBDD for majority function Maj(x,y, z) with ordering z < y < z.

Interestingly, both z-nodes output the same value: z itself. The only difference is which paths reach
them. With complement edges, further sharing would be possible.

3.6 Graph Properties and Metrics

Several metrics characterize BDD complexity:

Definition (BDD Size)

21
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The size of a BDD is the number of nodes, typically counting decision nodes only (excluding
terminals). We denote the size of BDD representing function f as | f| or size(f).

Definition (BDD Width)

The width at level ¢ is the number of nodes with variable x,. The maximum width is the
maximum over all levels.

Definition (BDD Depth)

The depth (or height) is the length of the longest path from root to a terminal. For ROBDDs
with n variables, depth is at most n.

3.6.1 Size Bounds
The size of an ROBDD is bounded:

» Lower bound: 1 (for constant functions 0 or 1)
« Upper bound: Depends on the function and ordering

For any function and any ordering, the ROBDD has at most 2" nodes (one per possible subfunction).
However, many practical functions have polynomial-size BDDs with good orderings.

“., Theorem (Size Hierarchy)

There exist functions with the following BDD sizes (for optimal orderings):
+ O(1): Constant functions, single variables
« O(n): AND, OR, linear threshold functions, symmetric functions
+ O(n?): Addition, comparison
+ O(2™): Multiplication (output bits), hidden weighted bit

The size can vary exponentially between different orderings for the same function.

3.7 Summary

We have now established the formal foundation:

i Key Definitions

« BDD: A DAG with decision and terminal nodes representing a Boolean function via
Shannon expansion

« OBDD: A BDD where variables appear in consistent order on all paths

« ROBDD: An OBDD with no redundant tests and no duplicate nodes
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ROBDDs are canonical: two ROBDDs with the same ordering represent the same function if
and only if they are identical.

The canonicity theorem (proved in Section 4) makes ROBDDs uniquely powerful. In the next chapter,
we prove this theorem and explore its consequences for equivalence checking and other operations.

23
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Chapter 4

Canonical Form and
Uniqueness

Canonicity is the property that makes BDDs genuinely useful, not just compact. A representation is
canonical if each function has exactly one representation — no exceptions, no ambiguity.

For reduced ordered BDDs with a fixed variable ordering, this property holds. The implications are
profound: checking if two functions are equivalent reduces to checking if two pointers are equal.

This chapter proves the canonicity theorem and explores its far-reaching consequences.

4.1 The Canonicity Theorem

We state the central theorem precisely before proving it.

“., Theorem (Canonicity of ROBDDs)

Let 7 be a fixed variable ordering on {1, ..., z,, }. Then:
1. Every Boolean function f : B” — B has a unique ROBDD with respect to 7
2. Two ROBDDs (with the same ordering) are structurally identical if and only if they
represent the same function

Equivalently: there is a bijection between Boolean functions on n variables and ROBDDs with

ordering .

This theorem has two remarkable consequences:
« Equivalence checking is trivial: f = g if and only if their ROBDDs are identical
« Satisfiability is trivial: f is satisfiable if and only if its ROBDD is not the 0-terminal

Let us build toward the proof.

4.2 Proof of Canonicity

The proof proceeds by structural induction on the number of variables the function depends on. We
show that the reduction rules uniquely determine the ROBDD structure.
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4.2.1 Preliminaries

Definition (Essential Variables)

A variable z, is essential to function f if f[, _y # f[,,_;. 1. the function value changes when
x,; changes (for some assignment to other variables).

A function depends only on its essential variables. Non-essential variables can be ignored in the
ROBDD (this is what the “no redundant tests” rule achieves).

Lemma (Shannon Expansion Uniqueness)

Every Boolean function f can be uniquely decomposed as:

where f|, _, and f|, _; are unique subfunctions not depending on z;.
7 K3

Proof- The cofactors f[, _jand f|, _; are defined pointwise and thus unique. The expansion follows
from the definition of Boolean functions. O

4.2.2 Base Case: Constant Functions

For constant functions f = 0 and f = 1:
« They have no essential variables
+ Their ROBDD is the respective terminal node (0 or 1)
« These are trivially unique

4.2.3 Inductive Step

Assume the theorem holds for all functions with fewer than k essential variables. Consider a function
f with k essential variables.

Let z; be the smallest essential variable according to ordering 7. By Shannon expansion:

Since z, is essential, f|, _o # f|,,_1. Both cofactors have at most k — 1 essential variables (they don’t
depend on z,).

By the induction hypothesis, f|, _, and f|, _; have unique ROBDDs, call them B, and B;.

The ROBDD for f must:
+ Have root variable z, (the smallest essential variable)
+ Have low child B, (unique by induction)
+ Have high child B; (unique by induction)

Have B, # B (since z; is essential)

The “no duplicate nodes” rule ensures this node is unique. Therefore, the ROBDD for f is unique. (]
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i Proof Strategy

The proof shows that:
1. The root must test the first essential variable (by ordering + no redundant tests)
2. The children are uniquely determined by the cofactors (by induction)
3. The node itself is unique (by no duplicate nodes)

Each reduction rule eliminates exactly one degree of freedom, leaving a unique representation.

Why BDDs Are Canonical

T Ay

formula 1 ( A
~ ~ Unique ROBDD
s a

yNzT >

formula 2 @

s a
—\(—11' V —\y) m @
. J

formula 3

Same function — Same BDD (with fixed ordering)

Equivalence check: just compare pointers!

Figure 8: Different formulas for the same function all produce the identical BDD structure.

4.3 Consequences of Canonicity

The canonicity theorem enables several operations to be performed in constant time.

4.3.1 Equivalence Checking

“., Theorem (O(1) Equivalence)

Given two ROBDDs By and B, for functions f and g (with the same ordering), we can check
whether f = g in O(1) time.

Proof: By canonicity, f = g if and only if By and B, are structurally identical. With hash consing
(discussed below), structurally identical means pointer-equal. Comparing two pointers takes con-
stant time. O

This is extraordinary. In contrast:
+ CNF equivalence is coNP-complete
+ Truth table comparison takes O(2") time
 General circuit equivalence is coNP-complete
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4.3.2 Satisfiability and Tautology

“., Theorem (O(1) SAT and Tautology)

Given an ROBDD By :
« f is satisfiable if and only if B, # 0
« [ is atautology if and only if By = 1

Both checks take O(1) time.

Proof. By canonicity, the only ROBDD representing the constant-false function is the 0 terminal.
Similarly, the only ROBDD for constant-true is the 1 terminal. Checking if a BDD is a terminal is a
constant-time operation. O

I\ Complexity Caveat

These operations are O(1) given the BDD. Building the BDD may take exponential time and
space. The complexity is shifted from query time to construction time.

4.3.3 Solution Counting

“., Theorem (Linear-Time Counting)

Given an ROBDD B; with |B;| nodes, the number of satisfying assignments to f can be
computed in O(|By|) time.

The algorithm traverses the BDD bottom-up, computing at each node the number of paths to the 1
terminal, weighted by the number of variable assignments each path represents.

4.3.4 Model Enumeration

We can enumerate all satisfying assignments by traversing all paths from root to the 1 terminal. Each
path corresponds to a (partial) assignment; variables not on the path can take any value.

4.4 Hash Consing: Implementing Canonicity

The theoretical canonicity theorem becomes practical through hash consing, a technique that main-
tains structural sharing,.

Definition (Hash Consing)

Hash consing is a technique where:
1. Every unique structure is stored exactly once
2. Creating a structure returns a reference to the existing copy if one exists
3. Structural equality reduces to pointer (reference) equality
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For BDDs, this means maintaining a unique table — a hash table mapping (var, low, high) triples to

node references.

4.4.1 The Unique Table

Definition (Unique Table)

The unique table is a hash map:

U : (Var x Node x Node) — Node (29)

For any triple (z,[, h), either:
» U(z,l, h) is undefined (no such node exists), or
« U(z,l, h) = v where v is the unique node with var(v) = z, low(v) = [, high(v) = h

4* Algorithm: mk — Create or Find Node

function mk(var, low, high):
// Rule 1: No redundant tests
if low = high:
return Tlow

// Rule 2: No duplicate nodes
if (var, low, high) in UniqueTable:
return UniqueTable[(var, low, high)]

// Create new node
node = new Node(var, low, high)

UniqueTable[(var, low, high)] = node
return node

The mk function enforces both reduction rules:
« If low = high, no node is created (Rule 1)
« If an equivalent node exists, it is returned (Rule 2)

¢ Key Insight

v

After every operation, the BDD manager maintains the invariant that structurally equal sub-
graphs are pointer-equal. This invariant is what makes O(1) equivalence checking possible.

4.4.2 Implications for Operations
With hash consing:

+ Creating a node is O(1) amortized (hash table lookup/insert)

+ Equivalence checking is O(1) (pointer comparison)

+ All operations that produce BDDs automatically produce reduced, canonical results
4.4.3 Per-Level vs Global Unique Tables

There are two common implementations:
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Global Unique Table: One hash table for all nodes.
« Pro: Simple implementation
+ Con: May have poor cache behavior

Per-Level Unique Tables: One hash table per variable level.
« Pro: Better cache locality during BDD operations
« Pro: Enables efficient variable reordering
«+ Con: Slightly more complex

Most modern implementations, including bdd-rs, use per-level unique tables.

4.5 The Cost of Canonicity

Canonicity is not free. The unique table and reduction rules impose constraints.

4.5.1 Memory Management

Since nodes are shared, we cannot simply delete a node when one reference disappears. BDD packages
must use:

+ Reference counting: Track how many references point to each node

« Garbage collection: Periodically reclaim unreachable nodes

« Mark-and-sweep: Identify live nodes from roots, reclaim the rest

4.5.2 Global State

The unique table is inherently global. All BDDs in a manager share the same table, which means:
+ Thread safety requires synchronization
« All operations must go through the manager
« Mixing BDDs from different managers is invalid

4.5.3 Single Ordering

All BDDs in a manager share the same variable ordering. This is necessary for canonicity but means:
+ You cannot have two BDDs with different orderings
+ Changing the ordering requires rebuilding all BDDs
+ Operations between BDDs require compatible orderings

4.5.4 The Trade-off

i Canonicity Trade-off

Canonicity trades construction-time complexity for query-time efficiency.

« Without canonicity: Construction might be faster, but every equivalence check requires full
comparison
+ With canonicity: Construction maintains invariants, but equivalence is free

For applications that perform many queries (verification, model checking), this trade-off is
favorable.
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4.6 Summary

The canonicity theorem is the foundation of BDD utility:

i Key Results

« Theorem: Every function has exactly one ROBDD (for fixed ordering)
» Equivalence: f = g iff their BDDs are pointer-equal — O(1)

+ SAT: f is satisfiable iff BDD is not 0 — O(1)

+ Tautology: f is valid iff BDD is 1 — O(1)

+ Counting: Number of solutions in O(|BDD|)

Hash consing makes these theoretical results practical.

In the next chapter, we see how to build BDDs through Boolean operations, maintaining canonicity at

every step.
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Chapter 5

BDD Operations

The power of BDDs lies not just in compact representation, but in efficient manipulation. This chapter
covers the core algorithms: combining BDDs ( Apply ), testing conditions (restriction), and abstracting
variables (quantification).

The recurring theme: BDD operations are polynomial in the BDD size, not the exponential function
size. When the BDD is compact, everything is fast.

5.1 Overview of Operations

BDD operations fall into several complexity classes:

Operation Complexity Example
Equivalence 0(1) f=g?
SAT check 0(1) f=0?
Negation o(1)* -f

Size query 0(1) |f|?
Counting olf)y  Ha:fl@) =1}
Cofactor o()) Floms
Apply (AND, OR, ...)  O(|f|-|gl) fAg
Quantification O(|f1?) Jz.f
Composition O(f-192)  fla=g)

* With complement edges; O(|f|) without.

The key insight: operations are polynomial in BDD size, which is often much smaller than 2.

5.2 The Apply Algorithm

The Apply algorithm is the workhorse of BDD manipulation. It combines two BDDs using any binary
Boolean operation (AND, OR, XOR, etc.).
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5.2.1 Intuition

To compute f op g where op is a binary operation:
1. Apply Shannon expansion to both functions on the same variable
2. Recursively compute the operation on cofactors
3. Combine results using mk

The trick is memoization: remember results to avoid redundant computation.

Apply(AND, f, g) — Computing z A (z V y)

f== g=xVy fAg==x
© © AND (=)
¢ . _> ¢

4 4 4

L4
n]
Recursion: AND( fiows Giow) = AND(0,y) =0

AND(fhigh:.ghigh) = AND(17 1) =1
Result: mk(z,0,1) =z v

Figure 9: Apply combines two BDDs by recursing on cofactors and rebuilding with mk .

5.2.2 The Algorithm

£* Algorithm: Apply

function Apply(op, f, 9):
// Terminal cases
if is_terminal(f) and is_terminal(g):
return terminal(op(value(f), value(g)))

// Short-circuit optimizations (for AND)

if op = AND:
if f = 0 or g = 0: return O
if f = 1: return g
if g = 1: return f
if f = g: return f

// Cache lookup
if (op, f, g) in ApplyCache:
return ApplyCache[(op, f, g)]

// Determine top variable (smallest in ordering)
v = topvar(f, g)

// Get cofactors (Shannon expansion)

f_low = cofactor(f, v, 0)
f_high = cofactor(f, v, 1)
g_low = cofactor(g, v, 0)
g_high = cofactor(g, v, 1)
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// Recursive calls
low Apply(op, f_low, g_low)
high = Apply(op, f_high, g_high)

// Build result (mk handles reduction)
result = mk(v, low, high)

// Cache result

ApplyCache[(op, f, 9)] = result
return result

The topvar function returns the smallest variable (according to ordering) that appears in either f or
g.If a BDD does not depend on that variable, its cofactors are both equal to itself.

i Cofactor Computation

For a node v with variable z:
« If we’re computing the cofactor for x: return low or high child

« If we're computing the cofactor for a variable y < = (above in ordering): the function
doesn’t depend on y, return the node itself

5.2.3 Terminal Rules

Different operations have different terminal rules:

Operation Terminal Rule Short-circuits
AND (A) ONz=0,1Nz==x Either arg is 0
OR (V) lve=1,0Vz==z Either arg is 1
XOR () 0pr=210z=—2x Both terminals
IMPLIES (—) 0—-z=11—-x==x f=0
IFF (+) reor=1,02=—x f=g

5.2.4 Example: Computing f A g
Let f =z, and g = = V x4, with ordering z; < z,.

1. Apply(AND, f, g):
+ Neither is terminal, so expand on z;
° flow =0, .fhigh =1
* Gow = 2> Gnigh = 1
2. Recursive calls:
+ Apply(AND, 0, x_2) = O (short-circuit)
o Apply(AND, 1, 1) = 1 (terminals)
3. Build result:
e mk(x_1, 8, 1) =z,

Result: z; A (2, V z5) =2y v

33



BINARY DEcisiON DIAGRAMS Chapter 5.2.4

5.3 Complexity Analysis

“., Theorem (Apply Complexity)

For BDDs f and g, Apply(op, , g9) runsin O(|f| x |g|) time.

Proof. The cache ensures each pair of nodes (nf, ng) is processed at most once. There are at most
| f| X |g| such pairs. Each non-cached call does O(1) work (excluding recursive calls). Therefore,
total time is O(| f| x |g|). O

“, Theorem (Result Size)

The result of Apply(op, f, g) has at most O(|f| x |g|) nodes.

This bound is tight in the worst case but rarely achieved in practice. Many operations produce results
much smaller than the theoretical maximum.

¢ Key Insight

The key insight: memoization transforms exponential recursion into polynomial time. Without
the cache, we’d explore up to 2" paths. With it, we explore at most | f| X |g| unique subproblems.

5.3.1 Cache Management

The apply cache (or computed table) is crucial for performance. Without caching, Apply would have
exponential complexity.

Implementation considerations:
+ Cache key: (op, f, g) triple, often hashed
« Cache size: Bounded; old entries may be evicted
+ Symmetry: For commutative operations, normalize (f, g) to avoid duplicate entries
« Clearing: Cache must be invalidated when garbage collecting nodes

5.4 If-Then-Else (ITE)

The If-Then-Else operation is a ternary operation that subsumes all binary operations.

Definition (ITE Operation)

ite(f,g,h) = (fAg)V (=f A h)
Semantically: “if f then g else h”

5.4.1 ITE is Universal

Every binary Boolean operation can be expressed as I'TE:
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Operation ITE Expression

frg ite(f, g,0)
fvg ite(f,1,9)
~f ite(f,0,1)
fog ite(f,—9,9)
f—g ite(f,9,1)
fog ite(f,9,~9)

Some BDD libraries implement only ITE and derive other operations from it. Others implement Apply
directly for common operations (more efficient).

5.4.2 ITE Algorithm

¥* Algorithm: ITE

function ITE(f, g, h):
// Terminal cases

if f = 1: return g

if f = 0: return h

if g =1 and h = 0: return f

if g = 0 and h = 1: return NOT(f)
if g = h: return g

// Cache lookup
if (f, g, h) in ITECache:
return ITECache[(f, g, h)]

// Determine top variable
v = topvar(f, g, h)

// Recursive calls
Tow ITE(cofactor(f,v,0), cofactor(g,v,0), cofactor(h,v,0))
high ITE(cofactor(f,v,1), cofactor(g,v,1), cofactor(h,v,1))

// Build result

result = mk(v, low, high)
ITECache[(f, g, h)] = result
return result

ITE complexity is O(| f| X |g| x |h|) in the worst case.

5.5 Negation

Negation (complement) is conceptually simple: flip every 0 to 1 and vice versa.

5.5.1 Without Complement Edges

¥* Algorithm: Negation (Recursive)
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function NOT(f):
if f = 0: return 1
if £ = 1: return 0
if f in NotCache: return NotCache[f]
result = mk(var(f), NOT(low(f)), NOT(high(f)))

NotCache[f] = result
return result

This takes O(| f|) time — we visit each node once and create a mirror node.

5.5.2 With Complement Edges
With complement edges (Section 11), negation is O(1): just flip a bit in the reference.

¢ Key Insight

Complement edges are an optimization where the “negated” bit is stored in the pointer, not the
node. This makes negation free but complicates other operations slightly. Most modern BDD
packages use complement edges.

5.6 Restriction (Cofactor)

Restriction substitutes a constant for a variable: f|,_,.

¥* Algorithm: Restrict

function Restrict(f, x, b):
if is_terminal(f): return f
if var(f) > x: return f // x not in f's cone
if var(f) = x:
return (b = 0) ? low(f) : high(f)

// var(f) < x: recurse
if f in RestrictCache: return RestrictCache[f]

result = mk(var(f),
Restrict(low(f), x, b),
Restrict(high(f), x, b))

RestrictCache[f] = result
return result

Restriction runs in O(] f|) time.
5.6.1 Cube Restriction
Often we want to restrict multiple variables at once. A cube is a conjunction of literals: z; A —z5 A 5.

Restricting by a cube means setting all those variables to their specified values. This can be done in a
single pass through the BDD.
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5.6.2 Applications

« Evaluation: f(1,0,1) = fl|, _y ;. _02,-1
+ Simplification: Given constraint ¢, simplify f under c
« Composition building block: Used in existential quantification

5.7 Composition (Substitution)

Composition replaces a variable with a function: f[z := g].

This is more expensive than restriction because g can be an arbitrary BDD, not just a constant.

| Algorithm: Compose

function Compose(f, x, g):
if is_terminal(f): return f
if var(f) > x: return f // x not in f's cone

if (f, x, g) in ComposeCache:
return ComposeCache[(f, x, g)]

if var(f) = x:
// £ = x ? high(f) : low(f)
// fIx := gl = g ? high(f)[x := g] : Low(f)[x := gl
result = ITE(g,
Compose (high(f), x, g),
Compose (Low(f), x, 9))
else:
// var(f) < x
result = mk(var(f),
Compose(Low(f), x, g),
Compose(high(f), x, g))

ComposeCache[ (f, x, g)] = result
return result

Composition complexity is O(|f|? x |g|?) in the worst case, but often much better in practice.

I\ Composition Pitfall

Repeated composition can be expensive. If you need f[z; := g1, %y := gg, ..., T, := g}, the order
matters and naive sequential composition can blow up. Consider vector composition or careful

ordering.

5.8 Existential and Universal Quantification

Quantification abstracts away a variable.

Definition (Existential Quantification)

Ell'f = f‘w:O v f‘&c:l

The function is true if f is true for some value of x.
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Definition (Universal Quantification)

fo = f‘z:o A f|z=1

The function is true if f is true for all values of x.

5.8.1 Algorithm

4* Algorithm: Existential Quantification

function Exists(f, x):
f0 = Restrict(f, x, 0)
f1 = Restrict(f, x, 1)
return Apply(OR, f0, 1)

This takes two restriction passes plus one Apply, so complexity is O(] f]?).

5.8.2 Multiple Variables

Quantifying multiple variables: 3z, 4, z5.f

Chapter 5.8

Naive approach: quantify one at a time. This can be inefficient because intermediate results may

explode.

Better approaches:

« Order by proximity: Quantify variables that are close in the ordering together
« Early quantification: Interleave quantification with conjunction

+ Conjunctive decomposition: Split f and quantify pieces

i Quantification in Model Checking

In symbolic model checking, image computation involves: Image(S) = Jx. T (x, ") A S(x)

Efficient quantification is critical for scalability. Techniques like “partition TR” and “early quan-

tification” address this.

5.9 Optimization Techniques

Several techniques improve operation performance:

5.9.1 Cache Sharing

Different operations can share cache entries:
« fAgandgA f are the same (commutativity)
+ Some ITE patterns reduce to Apply calls

5.9.2 Terminal Case Optimization

Recognizing terminal cases early avoids recursion:
« fA0=0,fVl=1
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cINfF=LIVEi=Tf
cfef=0f—f=1

5.9.3 Cofactor Computation

For efficiency, cofactor computation should be O(1):
o If the node’s variable matches: return child
« Otherwise: return the node itself (function doesn’t depend on that variable)

5.10 Summary

i Core Operations

+ Apply: Combine BDDs with any binary operation — O(|f| x |g|)
« ITE: Universal ternary operation — O(| f| x |g| x |h|)

+ Negation: O(1) with complement edges, O(|f|) without

+ Restrict: Substitute constant for variable — O(|f|)

« Compose: Substitute function for variable — O(| f|? x |g|?)

+ Quantify: Abstract away variables — O(|f|?)

All operations preserve canonicity: results are automatically reduced.

The Apply algorithm is the foundation. Understanding it deeply is essential for effective BDD use. In
Part II, we dive into implementation details that make these operations fast in practice.
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Chapter 6

Manager-Centric Architecture

Picture a library where every book can reference any page in any other book, but the references only
work because all books live on the same shelf. Move a book to a different shelf, and the references
shatter into meaningless numbers.

This is the essence of BDD architecture. Every BDD node can reference any other node, and these
references must remain consistent across the entire system. This chapter explains why BDD libraries
universally adopt a manager-centric architecture and how bdd-rs implements it.

6.1 The Central Challenge: Sharing

What makes BDDs powerful is also what makes them tricky to implement: maximal sharing,

Consider building the BDD for f = (a A b) V ¢. Now build g = (a A b) V d. Both formulas contain the
subexpression (a A b). In a well-designed BDD library, this subexpression is represented exactly once
— both f and g point to the same physical nodes in memory.

shared (a A b) subgraph

-
QLEE R RN NET NN NN NS

PRE AR R ERRE NN IS

4
[o]
Figure 10: Two BDDs sharing a common subgraph. Both f and g reference the same nodes for (a A b).

This sharing requires centralized control. If f and g lived in separate data structures, they couldn’t
share nodes. Every BDD library solves this the same way: a manager that owns all nodes.

6.2 Why a Manager?

The manager pattern is not a stylistic choice — it’s a necessity. BDDs need four guarantees that only
centralized control can provide:
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Requirement Why It Needs a Manager
Shared storage Nodes must live in one pool so references work across all BDDs
Hash consing Before creating a node, check if it exists — needs global view

Consistent ordering  All BDDs must agree on variable order

Shared caches Operation results must be reusable everywhere

Without a manager, two BDDs built independently would represent the same function with different
structures. The fundamental O(1) equivalence check — “are these two pointers equal?” — would break.

¢ Key Insight

Every major BDD library uses a manager:
« CUDD: DdManager (the gold standard)
« BuDDy: Global manager via bdd_init()
« Sylvan: Lock-free parallel manager
« bdd-rs: Bdd struct with interior mutability

6.3 The Bdd Manager in bdd-rs

Here is the actual Bdd struct from the source code:

pub struct Bdd {
/// Node storage: index 0 is the terminal node
nodes: RefCell<Vec<Node>>,
/// Free node indices available for reuse
free_set: RefCell<HashSet<NodeId>>,

/// Operation cache (memoizes ITE results)
cache: RefCell<Cache<0OpKey, Ref>>,

/// Size computation cache

size_cache: RefCell<Cache<Ref, ub64>>,

/// Variable ordering: level > variable
var_order: RefCell<Vec<Var>>,

/// Reverse mapping: variable -> level
level_map: RefCell<HashMap<Var, Level>>,

/// Per-level hash tables for uniqueness
subtables: RefCell<Vec<Subtahle>>,

/// Next variable ID to allocate
next_var_id: Cell<u32>,

/// Configuration settings
config: BddConfig,

Let us visualize how these components fit together:
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Bdd Manager

4 N\
nodes: Vec<Node> subtables cache: ITE results
[0] terminal Level 0: hash table (f, g, h) > result
[1] x » (B, 1) Level 1: hash table memoized ops
[2] y » (B, ©1) Level 2: hash table
size_cache
f 2 node count
free_set Variable Ordering

recycled indices var_order: [x, vy, zl]

level_map: x=0, y>1

next_var_id: 4 conﬁg

initial capacity, etc.

!

Ref : 32-bit handle

31-bit node index C

C = complement bit (negation)
Figure 11: Architecture of the Bdd manager showing all major components.

6.3.1 Interior Mutability

Notice all the RefCell wrappers? They enable interior mutability — the ability to modify data
through a shared reference (&self).

This is a deliberate ergonomic choice. Without it, every BDD operation would require &mut self,
meaning you could not hold multiple Ref values while building a formula:

// With interior mutability (what we have):

let x = bdd.mk_var(1); // &self
let y = bdd.mk_var(2); // &self
let f = bdd.apply_and(x, y); // &self - x and y still valid!

// Without (hypothetical):
let x = bdd.mk_var(1); // &mut self
// x is now invalid because we'd need &mut self again!

The trade-off: runtime borrow checking instead of compile-time. In practice, BDD operations don’t
nest in ways that cause panics.

6.4 References: The User-Facing Handle

Users never touch Node structs directly. Instead, they work with Ref — a compact 32-bit handle:
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Node Index (31 bits) C

Points to node in storage Neg?

Examples:

« Ref::ONE = 0b...0 (terminal, positive)
« Ref::ZERO = 0Ob...1 (terminal, negated)

« Node 5, positive = 0b...1010
» Node 5, negated = 0b...1011

Figure 12: Bit layout of Ref : 31 bits for node index, 1 bit for complement flag.

The complement bit is the key to O(1) negation:

impl Neg for Ref {
fn neg(self) — Self {

Self(self.0 ~ 1) // Just flip the lowest bit!

}

Instead of traversing a BDD and creating new nodes for —f, we simply flip one bit. This single

optimization cascades through the entire library, making XOR, equivalence, and implication faster.

Aspect Ref Node

Size 4 bytes 24 bytes

Copy Trivial Trivial but larger
Negation O(1) bit flip Would need new node

Comparison  Single integer compare

6.5 The API Surface

Field-by-field

The manager exposes operations through method calls. Here’s a quick tour:

6.5.1 Construction

// Create variables (1-indexed by convention)

let x
let y

bdd.mk_var(1);
bdd.mk_var(2);

// Build cubes and clauses efficiently
let cube = bdd.mk_cube([1, -2, 31);

// X1 A =X2 A X3

let clause = bdd.mk_clause([1, -2, 31); // X1 V =X» V X3

6.5.2 Boolean Operations

// Binary operations

let f_and_g = bdd.apply_and(f, g);
let f_or_g = bdd.apply_or(f, g);
let f_xor_g = bdd.apply_xor(f, g);
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// The universal if-then-else
let result = bdd.apply_ite(f, g, h); // f 2 g : h

// Negation is just syntax
let not_f = -f;

6.5.3 Queries

// 0(1) checks (after construction)

bdd.is_zero(f) // Unsatisfiable?

bdd.is_one(f) // Tautology?

f =g // Equivalent? (pointer compare!)
// 0(CIf]) operations

bdd.size(f) // Node count
bdd.sat_count(f, n_vars) // Solution count

6.5.4 Quantification

// Existential: 3x. f (is there some x making f true?)
let ex = bdd.exists(f, [Var::new(1)]);

// Universal: Vx. f (is f true for all x?)
let fa = bdd.forall(f, [Var::new(1)]);

// Relational product: 3Ivars. (f A g)
let rp = bdd.rel_product(f, g, &quant_vars);

6.6 Creating and Configuring

For most uses, the default configuration works well:
let bdd = Bdd::default();
For large problems, customize the initial capacities:

use bdd_rs::bdd::{Bdd, BddConfig};

let config = BddConfig::default()
.with_initial_nodes(1 << 20) // ~1M nodes
.with_cache_bits(18); // 256K cache entries

let bdd = Bdd::with_config(config);

I\ Cross-Manager Pitfall

A Ref is only valid for its originating manager. Mixing them causes silent corruption:

let bddl = Bdd::default();
let bdd2 = Bdd::default();
let x = bddl.mk_var(1);
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// WRONG: x is from bddl!
// bdd2.apply_and(x, bdd2.mk_var(2)); // Undefined behavior

Rust’s type system cannot catch this — the indices look the same. Be careful when working with
multiple managers.

6.7 What’s Next

The following chapters dive deep into each component:

« Section 7: How nodes store variable, children, and hash data
+ Section 8: Per-level subtables for O(1) node lookup
Section 9: The ITE algorithm that powers all operations

Section 10: How memoization prevents exponential blowup
Section 11: The elegant trick behind O(1) negation
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Chapter 7

Node Representation

At the lowest level, a BDD is just memory: bytes laid out in a particular way. How those bytes are
organized directly impacts every operation’s performance — from cache locality during traversals to
memory consumption with millions of nodes.

This chapter explores bdd-rs ‘s node structure, the type-safe wrappers that prevent common bugs, and
the memory layout decisions that keep things fast.

7.1 The Node Structure

Each BDD node represents a Shannon decomposition:
f = (_'U A flow) \ (U A fhigh) (30>

The Node struct captures this with five fields:

#[derive(Debug, Copy, Clone)]
pub struct Node {

pub variable: Var, // Decision variable at this node
pub low: Ref, // Child when variable = 0

pub high: Ref, // Child when variable = 1

pub next: NodeId, // Hash collision chain pointer
hash: ué4, // Precomputed hash for fast lookup

Node Memory Layout (24 bytes)

Decision Children Hash Precomputed
variable (Ref handles) chain hash
variable Tlow high next hash

4B 4B 4B 4B 8B

next enables intrusive hashing — collision chains live in the nodes themselves.

Figure 13: Node memory layout: 24 bytes with precomputed hash and intrusive collision chain.

i Why Store the Hash?

47



BINARY DEcisiON DIAGRAMS Chapter 7.1

Computing hash(variable, low, high) requires three multiplications and XORs. By precom-
puting and storing it in the node, we avoid recalculating during hash table operations. This trades
8 bytes of memory per node for faster lookups.

The next field implements intrusive hashing — nodes themselves form the collision chains for
the hash table, rather than using a separate wrapper struct. This CUDD-inspired design eliminates
allocation overhead and improves cache locality.

7.2 Terminal Nodes

The terminal node (representing both T and L) receives special handling:

// During manager construction:
let mut nodes = Vec::with_capacity(capacity);
nodes.push(Node::new(Var:: ZERO, Ref::INVALID, Ref::INVALID));

// Terminal references:
let one = Ref::positive(0); // @0 (non-negated terminal)
let zero = -one; // ~@0 (negated terminal)

Key properties of the terminal:

1. Index 0: The terminal always lives at index 0 in the node array
2. Variable = 0: var::ZER0O marks this as a terminal, not a decision node
3. Invalid children: Ref:: INVALID signals that children don’t exist
4. Both constants share it: one = @0 and zero = ~@0 (complement)
This design means checking for terminals is a simple index comparison:
impl Bdd {
pub fn is_terminal(&self, r: Ref) — bool {
r.idQ.rawn() = 0
}
pub fn is_one(&self, r: Ref) — bool {
r.raw() = self.one.raw()
I
pub fn is_zero(&self, r: Ref) — bool {

r.raw() = self.zero.raw()

F

7.3 Type-Safe Wrappers

bdd-rs uses the newtype pattern extensively to prevent mixing up different indices:
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Type-Safe Index Wrappers
NodeId(u32) Var(u32) Level(u32) Ref(u32)
— nodes array variable ID (1+) ordering position id + complement

Ref Bit Layout:
| 31-bit Nodeld ‘ C ‘

31 1 0

C = 0:positive edge € = 1:negated (complement) edge

Figure 14: Type-safe wrappers prevent accidentally mixing indices. The Ref type packs node ID and complement
flag into 32 bits.

pub struct NodeId(u32); // Index into nodes array

pub struct Var(u32); // Variable identifier (1-indexed)
pub struct Level(u32); // Position in variable ordering
pub struct Ref(u32); // Handle: (id << 1) | negated

These types are all v32 internally, but the type system prevents accidental confusion:

fn process(v: Var, 1: Level) { ... }

let var = Var::new(1);
let level = Level::new(0);

process(var, level); // v Compiles
// process(level, var); // x Type error!

Definition (Nodeld)

An index into the nodes: Vec<Node> array. Valid range is [0, nodes.len). Index 0 is the terminal
node.

Definition (Var)

A semantic variable identifier. Variables are 1-indexed by convention — var(0) is reserved for
terminals. This aligns with DIMACS format used in SAT solvers.

Definition (Level)

Position in the current variable ordering. Level 0 is the root (top) of the BDD. Lower levels are
closer to terminals.

Definition (Ref)
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A user-facing handle combining NodeId and a complement bit. The 31 high bits store the node
index; the low bit stores negation.

“, Implementation Note

In bdd-rs, variables are 1-indexed by convention. Variable 0 is reserved for internal use (marking
terminals). This aligns with DIMACS format used in SAT solvers.

7.4 Variables vs. Levels

A common source of confusion is the distinction between variables and levels:

Concept Meaning Example
Variable Semantic identity (x4, z,, ...) var(1) = “input A”
Level Position in current ordering Level(0) = root position

Why does this distinction matter? Because variable reordering can change which variable is at
which level.

“\. Example — Variable vs. Level

With ordering z, < z; < z3:
s X, is atlevel 0
+ x; is at level 1

+ x5 isatlevel 2

The variable x; always represents the same Boolean input, but its position in the BDD changes
with the ordering.

The manager maintains bidirectional mappings:

// In Bdd struct:
var_order: RefCell<Vec<Var>>, // level > variable
level_map: RefCell<HashMap<Var, Level>>, // variable > level

// Usage:
fn var_at_level(&self, level: Level) — Var {
self.var_order()[level.index()]

}

fn level_of_var(&self, var: Var) — Level {
self.level_map() [&var]
}

This separation is crucial for dynamic reordering — we can swap positions without changing variable
semantics.
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7.5 The Ref Type in Detail

Ref is the most important type for users. It’s a 32-bit value that encodes both which node and
whether it’s negated:

#[repr(transparent)]
pub struct Ref(u32);

impl Ref {
// Bit layout: [31-bit node index][1-bit complement]

pub fn new(id: NodeId, negated: bool) — Self {
Self((id.raw() << 1) | (negated as u32))
+

pub fn id(self) — Nodeld {
NodeId:: from_raw(self.0 >> 1)
+

pub fn is_negated(self) — bool {
(self.0 & 1) = 0
+

¢ Key Insight

The complement bit enables O(1) negation. Instead of building a new BDD for —f, we just flip
the low bit of the Ref. This is why BDD libraries with complement edges outperform those
without for negation-heavy operations.

7.5.1 Ref Operations

// Negation: flip the complement bit
impl Neg for Ref {
fn neg(self) — Self {
Self(self.0 ~ 1)
b
+

// Comparison: direct integer compare
impl PartialEq for Ref {
fn eq(&self, other: &Self) — bool {
self.0 = other.0
+
I

// Hashing: use raw value
impl Hash for Ref {
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.hash(state);
+

The raw u32 comparison for equality is exactly why BDD equivalence is O(1). Two Ref values are
equal if and only if they represent the same Boolean function.
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7.6 Memory and Cache Considerations

7.6.1 Contiguous Storage

Nodes are stored in a simple Vec<Node>:

nodes: RefCell<Vec<Node>>

This provides:
+ O(1) access: Index directly into array
« Cache locality: Sequential nodes are adjacent in memory
« Simple growth: vec handles reallocation automatically

7.6.2 Cache-Friendly Traversal

BDD algorithms typically traverse nodes in a pattern that respects variable ordering:
1. Start at root (highest level)
2. Recursively process children (lower levels)
3. Combine results bottom-up

Because nodes at the same level are often created together, they tend to be adjacent in the array. This
improves CPU cache hit rates during traversal.

7.6.3 Size Analysis
With the current 24-byte node structure:

e 1M nodes ~ 24 MB
e 16M nodes ~ 384 MB
« 256M nodes ~ 6 GB

The cache size (for memoization) is typically smaller — bdd-rs defaults to 2'¢ cache entries regardless
of node capacity.

Performance

For large problems, the bottleneck is usually cache misses during graph traversal, not raw
memory bandwidth. Keep your working set small by avoiding unnecessary intermediate results.

7.7 Putting It Together

Here’s how the types interact during a simple operation:

let bdd = Bdd::default();
let x = bdd.mk_var(1); // Returns Ref

// mk_var internally:

// 1. Creates Var(1)

// 2. Registers var at next available Level

// 3. Creates Node { variable: Var(1), low: zero, high: one, ... }
// 4. Stores node at some NodeId

// 5. Returns Ref::positive(node_id)
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let not_x = -x; // Just flips the complement bit

// is_one check:

// 1. Compare x.raw() with one.raw()
// 2. Direct u32 comparison --- 0(1)

The layered type system — Node, NodeId, Var, Level, Ref — may seem complex, but each type serves
a specific purpose and prevents a class of bugs.
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Chapter 8

The Unique Table

What stops a BDD from creating the same node twice? The answer is the unique table — a hash-
based lookup structure ensuring that every (v, low, high) triple maps to exactly one node.

This is the mechanism behind canonicity. Without it, two separately constructed BDDs might represent
the same function but have different structures. The O(1) equivalence check — the killer feature of
BDDs — would break entirely.

This chapter explains how the unique table works and why bdd-rs uses per-level subtables for
efficiency.

8.1 The Problem: Duplicate Nodes

Imagine building the BDD for f = (z Ay) V (z A z). The variable x appears twice in the formula.
Without care, we might create two separate z-nodes:

Problem: Duplicate nodes Solution: Hash consing

to y branch to z branch shared by both

Figure 15: Without hash consing (left), duplicate nodes destroy canonicity. With it (right), identical structures
are shared.

Hash consing prevents this. Before creating any node, we check: “Does this node already exist?” If yes,
return the existing one. If no, create and register it.

8.2 The Unique Table

The unique table maintains the invariant:

V(var, low, high) : at most one node exists (31)

It’s a hash map from triples to node IDs:

U : (Var x Ref x Ref) — Nodeld (32)
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Definition (Hash Consing)

Hash consing is a technique where:
1. Before creating a structure, check if an identical one exists
2. If it exists, return a reference to the existing one
3. If not, create it and add it to the table

This ensures structural sharing: identical structures are represented exactly once.

8.3 The mk Operation

The mk (make) function is the gatekeeper. Every node creation goes through it, and it enforces all BDD

invariants:
[ mk(var, low, high) ]
v

i High negated? Flip: return -mk(var, -low, -high) | Invariant 1
ﬁ ! i

low = high ? Redundant: return low Invariant 2
\ % J
i Exists in unique table? return existing | Invariant 3
ﬁ ! i
| Create new node, insert into table, return )

Figure 16: The mk function enforces three invariants in sequence.

#* Algorithm: mk (Make Node)

mk(var, low, high):
// Invariant 1: Canonicity (high edge positive)
if high.is_negated():
return -mk(var, -low, -high)

// Invariant 2: Reduction (no redundant tests)
if low = high:
return low

// Invariant 3: Uniqueness (hash consing)

level = get_level(var)

if (low, high) in subtables[level]:
return subtables[level].find(low, high)

// Create and register new node

node = Node::new(var, low, high)

id = allocate_node(node)
subtables[level].insert(low, high, id)
return Ref::positive(id)
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8.4 Per-Level Subtables

bdd-rs doesn’t use a single global hash table. Instead, it uses per-level subtables — one hash table
per variable:

Per-Level Subtables

Level 0: z Level 1: y Level 2: 2
nodes with var = x nodes with var =y nodes with var = z

buckets buckets buckets

Query: “Does node (y, £, h) exist?” — Look only in Level 1's table

Figure 17: Each level maintains its own hash table. Queries only search the relevant level.

subtables: RefCell<Vec<Subtable>> // level - subtable

pub struct Subtable {
pub variable: Var,
buckets: Vec<NodeId>, // Hash bucket heads
bitmask: ub4, // For fast modulo
count: usize, // Node count at this level

8.4.1 Why Per-Level?

i Advantages of Per-Level Subtables

1. Smaller tables: Each level has fewer nodes than the total, reducing collision rates
2. Better locality: Operations often work within one or two levels

3. Simpler reordering: Swapping variable positions means swapping subtables

4. Parallelism-friendly: Different levels can be processed independently

The key insight: when creating a node for variable v, we know which subtable to search. We don’t
need to include v in the hash — it’s implicit from which table we’re querying.

fn bucket_index(&self, low: Ref, high: Ref) — usize {
let hash = hash_children(low, high);
(hash & self.bitmask) as usize

8.5 The Unique Table vs. Computed Table

Two hash-based structures exist in a BDD library. Don’t confuse them:

Aspect Unique Table Computed Table (Cache)

Purpose Node deduplication Operation memoization
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Key (low, high) at level (op, f,9,h)

Value Nodeld Ref (result)

On collision  Chain (must be complete) Evict (optimization only)
Correctness Required Performance only

Chapter 8.5

The unique table must be complete — every node must be findable. The computed table can evict

entries on collision; it only affects speed, not correctness.

8.5.1 Intrusive Hashing

Following CUDD’s design, bdd-rs uses intrusive hashing — collision chains are stored in the nodes

themselves via the next field:

pub struct Node {
pub variable: Var,
pub low: Ref,
pub high: Ref,
pub next: NodeId, // Next in collision chain
hash: ué4,

The buckets array stores head pointers. Following next fields traverses the collision chain:

Subtable for level k:

buckets: [NodeId; 27bits]
[6] — Node@5 — Node@12 — o
[1] — o
[2] —— Node@3 — ¢

Approach Memory Locality
Complexity Intrusive (CUDD-style)  No extra allocation
Better — nodes are data Harder to implement External chaining
Entry wrapper per node Worse — indirection Easier

Open addressing No chains Excellent
Resizing tricky

8.5.2 Lookup Operation
Finding a node with given children:
impl Subtable {
pub fn find(&self, low: Ref, high: Ref, nodes: &[Node]) — Option<NodeId> {
let idx = self.bucket_index(low, high);

let mut current = self.buckets[idx];

// Walk collision chain
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while current == Node::NO_NEXT {
let node = &nodes[current.index()];
if node.low = low && node.high = high {
return Some(current);
F
current = node.next;

F

None

Average case is O(1) assuming a good hash function and reasonable load factor. Worst case is O(n) if
all nodes hash to the same bucket.

8.5.3 Insert Operation
Adding a new node to the subtable:

impl Subtable {
pub fn insert(&mut self, low: Ref, high: Ref, id: NodeId, nodes: &mut [Node]) {
let idx = self.bucket_index(low, high);

// Prepend to collision chain
nodes[id.index()].next = self.buckets[idx];
self.buckets[idx] = id;

self.count += 1;

Insertion is O(1) — we prepend to the chain head. No need to check for duplicates; we assume find
was called first.

8.6 Hash Function Design

A good hash function for (low, high) pairs should:
1. Distribute evenly: Minimize collisions
2. Be fast: Called frequently during BDD construction
3. Handle similar inputs: Nearby Ref values shouldn’t cluster

fn hash_children(low: Ref, high: Ref) — ub4 {
let x = low.raw() as ub4;
let y = high.raw() as ub4;
// Mix using multiplication and XOR
x.wrapping_mul(PRIME1) ~ y.wrapping_mul(PRIME2)

The node’s hash is precomputed during creation:

impl Node {
pub fn new(variable: Var, low: Ref, high: Ref) — Self {
let hash = {

let x = variable.id() as ub4;
let y = hash(&low);

let z = hash(&high);
hash(&(y, z, x))
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i
Self { variable, low, high, next: Self::NO_NEXT, hash }

8.7 Load Factor and Resizing

The load factor is the ratio of nodes to buckets:

count
load factor = ——— 33
oac factor num_buckets (33)

High load factors mean longer collision chains and slower lookups. bdd-rs initializes subtables with
216 buckets by default:

const DEFAULT_BUCKET_BITS: usize = 16; // 65536 buckets

impl Subtable {
pub fn new(variable: Var) — Self {
Self::with_bucket_bits(variable, DEFAULT_BUCKET_BITS)
b

For most applications, this is sufficient. Dynamic resizing (rehashing) adds complexity and is not
currently implemented in bdd-rs .

I\ Load Factor Implications

If a single level grows to millions of nodes with only 65536 buckets, the average chain length
becomes ~ 15 nodes. For pathological cases, consider initializing with larger subtables.

8.8 Maintaining Invariants

The unique table and node storage must stay synchronized:

“., Theorem (Unique Table Invariants)

At all times:
1. Every node in storage (except free slots) is in exactly one subtable
2. Every entry in a subtable points to a valid node with matching children
3. No two nodes have the same (var, low, high) triple

Violations indicate bugs in the implementation. Debugging techniques include:

// Verify all nodes are reachable from subtables
fn validate_unique_table(&self) {
let mut seen = HashSet::new();
for subtable in self.subtables().iter() {
for id in subtable.all_nodes(&self.nodes()) {
assert!(!seen.contains(&id), "Duplicate entry");
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seen.insert(id);
+
+

// Check free_set nodes are not in subtables
for &id in self.free_set().iter() {
assert!(!seen.contains(&id), "Free node in table");

F

8.9 Alternative Designs

Other BDD libraries make different choices:

Library Table Structure Hash Strategy
CUDD Per-level subtables Intrusive chaining
BuDDy Global table External chaining

Sylvan Lock-free global table Open addressing
bdd-rs Per-level subtables Intrusive chaining

The per-level approach scales better for dynamic reordering, while global tables are simpler to imple-
ment. Lock-free designs like Sylvan’s enable parallelism but add significant complexity.

¢ Key Insight

v

The unique table is where BDD libraries spend most of their implementation effort. A well-tuned
hash table directly impacts the speed of every BDD operation.
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Chapter 9

The Apply Algorithm in Detail

Apply is the workhorse of BDD manipulation. It takes two (or three) BDDs and a Boolean operation,
and produces a new BDD representing the combined function. Nearly every BDD operation — from
simple AND/OR to complex quantification — flows through Apply.

Understanding Apply deeply means understanding BDD performance. This chapter dissects the
algorithm: terminal cases, normalization tricks, and the crucial role of caching that makes everything
polynomial.

9.1 The Big Picture

Apply computes f op g for any binary Boolean operation op (AND, OR, XOR, etc.). The structure
follows the recursive decomposition of Boolean functions:

[ apply_ite(f, g, h) ]

!

O(1) checks:

[ Terminal cases? Return immediately ] constants,
¢ equal args

Key to
[ Cache hit? Return cached result ] polynomial
complexity

:

Find top variable v, compute cofactors

:

Recurse: t = ite(f,, gy, Ny ), € = ite(f oy, gops hy) ]

!

mk(v, e, t) — cache — return

Figure 18: High-level flow of the Apply (ITE) algorithm.

The algorithm has polynomial complexity because of memoization: each unique triple (f, g, h) is
computed at most once.
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9.2 Everything is ITE

In bdd-rs, all operations go through the ITE (if-then-else) primitive:
ite(f,g,h) = (F A g)V (=f Ah) (34)

Every binary operation can be expressed as ITE:

Operation Formula ITE Encoding

frg f-g ite(f, 9,0)
fvg f+g ite(f,1,9)
fog f@g ite(f,—9,9)
f—=g f+g  ite(f,9,1)
f=g feg  ite(f,9,79)

This unification simplifies implementation — one algorithm handles everything.

9.3 Terminal Cases

Terminal cases are where recursion stops. More terminal cases mean faster computation.
9.3.1 Constant Arguments

// ite(1, g, h) =g
if self.is_one(f) { return g; }

// ite(®, g, h) =
if self.is_zero(f) { return h; }

9.3.2 Equal and Complementary Arguments

// ite(f, g, g) = g (doesn't matter what f is)
if g = h { return g; }

// ite(f, 1, 0) = f
if self.is_one(g) &8& self.is_zero(h) { return f; }

// ite(f, 0, 1) = -
if self.is_zero(g) && self.is_one(h) { return -f; }

9.3.3 Advanced Terminal Cases
These catch more patterns:
// ite(f, 1, -f) =
if self.is_one(g) & h = -f { return self.one(); }

// ite(f, f, ) = £ (f AND f = )
if g = f && self.is_zero(h) { return f; }

// ite(f, -f, 8) = 0 (f AND -f = 0)
if g = -f && self.is_zero(h) { return self.zero(); }
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“\. Example — Terminal Cases for AND

Since f A g = ite(f, g,0), terminal cases include:
« ite(8, g, 0) = 0 (absorbing element)
o ite(1, g, 0) = g (identity)
o ite(f, f, 0) = f (idempotent)
o ite(f, -f, 0) = 8 (complement)

9.4 Standard Triples: Cache Optimization
Standard triples normalize equivalent ITE calls to improve cache hit rates.

The insight: ite(f, 1, g) and ite(g, 1, f) compute the same function (f V g). If we always put the
“smaller” BDD first, they’ll hit the same cache entry.

// ite(f, £, h) > ite(f, 1, h) (f in "then" position is redundant)
if g = f {
return self.apply_ite(f, self.one, h);
I
// ite(f, g, f) > ite(f, g, 0) (f in "else" position is redundant)
iFf b = 7 4
return self.apply_ite(f, g, self.zero);
I3
// ite(f, -f, h) > ite(f, 0, h)
if g = -f {
return self.apply_ite(f, self.zero, h);
F
// ite(f, g, -f) » ite(f, g, 1)
if h = -f {
return self.apply_ite(f, g, self.one);
IF

9.4.1 Argument Ordering

When possible, reorder arguments so the smallest-variable BDD comes first:

let i = self.variable(f.id());
let j = self.variable(g.id());
let k = self.variable(h.id());

// ite(f, 1, h) = ite(h, 1, f) = f v h

// Choose the one with smaller top variable

if self.is_one(g) 8&& self.var_precedes(k, i) {
return self.apply_ite(h, self.one, f);

}

// ite(f, g, 8) = ite(g, f, 0) = f A g

if self.is_zero(h) && self.var_precedes(j, i) {
return self.apply_ite(g, f, self.zero);

¥

This normalization ensures that ite(f, 1, g) and ite(g, 1, f) hit the same cache entry.

9.5 Complement Edge Handling

The canonical form requires that the “then” branch (g) is never negated:
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let (mut £, mut g, mut h) = (f, g, h);

// ite(-f, g, h) > ite(f, h, g)
if f.is_negated() {

f = -f;

std::mem::swap(&nut g, &mut h);
I

assert!(!f.is_negated());

// ite(f, -g, h) »> -ite(f, g, -h)
let mut n = false;
if g.is_negated() {

n = true;
g = -9;
h = -h;

}

assert!(!g.is_negated());

The n flag tracks whether we need to negate the final result. This normalization is crucial for cache
efficiency — without it, ite(f, g, h) and ite(f, -g, -h) would be cached separately.

¢ Key Insight

Complement edge normalization can double cache hit rates. The small overhead of checking
and swapping is far outweighed by reduced redundant computation.

9.6 Cofactor Computation

Given the top variable v, we need cofactors of all three arguments:

// Determine top variable (smallest in ordering)
let mut m = i; // f's variable
if !j.is_terminal() {
m = self.top_variable(m, j);
I
if !k.is_terminal() {
m = self.top_variable(m, Kk);
}

// Get cofactors

let (ft, fe) = self.top_cofactors(f, m); // fl_{m=1}, f|_{m=0}
let (gt, ge) = self.top_cofactors(g, m);

let (ht, he) = self.top_cofactors(h, m);

The top_cofactors function handles three cases:

pub fn top_cofactors(&self, node_ref: Ref, v: Var) — (Ref, Ref) {
// Terminal: cofactors are the terminal itself
if self.is_terminal(node_ref) {
return (node_ref, node_ref);

¥
let node = self.node(node_ref.id());
// Variable not at this node: function doesn't depend on v

if self.var_precedes(v, node.variable) {
return (node_ref, node_ref);
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}

// Variable matches: return children (respecting complement)
assert_eq! (v, node.variable);
if node_ref.is_negated() {
(-node.low, -node.high)
} else {

(node.low, node.high)
Iy

i Cofactor Computation

For a node with variable z:
« If we’re computing the cofactor for z: return low or high child
+ If we're computing the cofactor for a variable y < = (above in ordering): the function
doesn’t depend on y, return the node itself

9.7 The Recursive Step

With cofactors computed, we recurse:

// Recursive calls on cofactors
let t = self.apply_ite(ft, gt, ht); // "then" branch
let e = self.apply_ite(fe, ge, he); // "else" branch

// Build result
let result = self.mk_node(m, e, t); // Note: low = else, high = then

// Cache and return
self.cache_mut().insert(key, result);
if n { -result } else { result }

Note the argument order to mk_node : low (else) comes before high (then). This matches the Shannon
decomposition f = (=0 A fi,) V (VA frign)-

9.8 The Complete ITE Implementation

Here’s the full implementation structure:

¥* Algorithm: apply_ite (ITE Operation)

apply_ite(f, g, h):
// Terminal cases (constants)

if f = 1: return g

if £ = 0: return h

if g = h: return g

if g = 1 and h = 0: return f

if g = 0 and h = 1: return -f
// ... more terminal cases ...

// Standard triple normalizations
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if g = f: return apply_ite(f, 1, h)
if h = f: return apply_ite(f, g, 0)
// ... more normalizations ...

// Argument ordering (smallest variable first)
// ... reordering logic ...

// Complement edge normalization
if f.is_negated():
f = -f; swap(g, h)
n = false
if g.is_negated():
n = true; g = -g; h = -h

// Cache lookup
key = (f, g, h)
if key in cache: return cache[key] (negated if n)

// Determine top variable
m = top_var(f, g, h)

// Get cofactors

(ft, fe) = top_cofactors(f, m)
(gt, ge) = top_cofactors(g, m)
(ht, he) = top_cofactors(h, m)
// Recurse

t = apply_ite(ft, gt, ht)
e = apply_ite(fe, ge, he)

// Build and cache result
result = mk(m, e, t)

cache[key] = result
return result (negated if n)

9.9 Complexity Analysis

“., Theorem (ITE Complexity)

For BDDs f, g, and h, apply_ite(f, g, h) runsin O(|f| X |g| X |h|) time.

Proof. The cache key is the triple (f, g, h) after normalization. There are at most |f| x |g| X |h|
distinct triples. Each non-cached call does O(1) work (excluding recursive calls). Therefore, total
time is bounded by O(|f| x |g| % |h|). O

For binary operations where one argument is constant, this simplifies:
« fAg=ite(f,g,0): O(|f] x |g]) since |0] =1
« fVvg=ite(f,1,9): O(f] x |g])

9.10 Iterative vs. Recursive Implementation

The recursive implementation is clean but has a limitation: deep BDDs can overflow the call stack.

// Recursive (current bdd-rs approach)
fn apply_ite(&self, f: Ref, g: Ref, h: Ref) — Ref {
// ... base cases ...
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let t = self.apply_ite(ft, gt, ht); // Stack frame
let e = self.apply_ite(fe, ge, he); // Another stack frame
self.mk_node(m, e, t)

For very large BDDs (millions of nodes), an iterative implementation with an explicit stack avoids
overflow:

// Iterative alternative

fn apply_ite_iterative(&self, f: Ref, g: Ref, h: Ref) — Ref {
let mut stack = Vec::new();
stack.push(Task:: Compute(f, g, h));

while let Some(task) = stack.pop() {
match task {
Task::Compute(f, g, h) = {
// Check cache, terminal cases...
// Push continuation and recursive tasks
stack.push(Task:: Combine(m, key));
stack.push(Task:: Compute(fe, ge, he));
stack.push(Task:: Compute(ft, gt, ht));
i
Task::Combine(m, key) = {
// Pop results, build node, cache
b
+
+
// Return final result

The trade-off:
« Recursive: Cleaner code, limited by stack size
o Iterative: More complex, handles arbitrarily deep BDDs

Performance

BDD operations are exponentially faster in release mode. Debug builds have significant overhead
from bounds checking and unoptimized recursion. Always benchmark with --retease.

9.11 Operation-Specific Optimizations

While ITE is universal, specialized implementations can be faster:
9.11.1 AND Optimization

pub fn apply_and(&self, f: Ref, g: Ref) — Ref {

// Special terminal rules for AND

if self.is_zero(f) || self.is_zero(g) {
return self.zero; // Short-circuit

+

if self.is_one(f) {
return g;

+

if self.is_one(g) {
return f;
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b
if £ =94
return f; // Idempotent
+
if f = -g {
return self.zero; // Contradiction
+

// Fall back to ITE
self.apply_ite(f, g, self.zero)

9.11.2 XOR and Complement Edges

XOR has a special relationship with complement edges:
fe&g=-(fe-g) (35)
This means XOR can often be computed by just flipping a complement bit:

pub fn apply_xor(&self, f: Ref, g: Ref) — Ref {

// f&0 =fFf

if self.is_zero(g) {
return f;

Iy

// fe&1l=-f

if self.is_one(g) {
return -f;

+

/| f&f =0

if £ =94
return self.zero;

+

/] fe-f=1

if f = -g{
return self.one;

b

// General case

self.apply_ite(f, -g, g)

9.12 Summary
The Apply/ITE algorithm is the workhorse of BDD manipulation. Its efficiency comes from:

. Aggressive terminal case checking: Stop recursion as early as possible
. Standard triple normalization: Maximize cache reuse
. Complement edge handling: Unify equivalent computations

O R

. Memoization: Never recompute the same subproblem

The implementation in bdd-rs follows the classic CUDD approach, optimized for single-threaded use
with interior mutability.
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Chapter 10

Caching and Computed Tables

The Apply algorithm’s polynomial complexity hinges on memoization — remembering results to
avoid redundant computation. Without caching, BDD operations degrade to exponential time, no
better than brute-force enumeration. This chapter explores the cache (also called the computed table)
that transforms BDDs from a theoretical curiosity into a practical powerhouse.

10.1 Why Caching Matters

Consider computing f A g where both BDDs have n nodes. The recursive structure of Apply spawns
a call tree that branches at every non-terminal node:

Without Cache With Cache

| |
: Computed Table

(n, f, g) > result;

_. (A, u, V) > result,

Apply(a,u,v) Apply(a,u',v")

r AN A r A \ (an, a, b) > results v
(\pply(a,b)) (&pulv(a.b)) t\pply(a.b>) kApply(a.b)) °

Same subproblem computed 4x !
Computed once, reused!

Exponential blowup: O(2") bl al: O(1 ] x [g])
olynomial: X |g

Figure 19: Without caching (left), identical subproblems are recomputed exponentially. With caching (right),
each unique subproblem is solved once.

Without memoization, this tree can have exponentially many leaves. The same subproblem Apptly (AND,
u, v) appears repeatedly from different branches — and each time, we would naively recompute it
from scratch.

With caching, each unique (op, u,v) triple is computed exactly once and stored. Since there are at

most O(|f| X |g|) such triples, the algorithm achieves polynomial time.

., Theorem (Caching Complexity)
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Without memoization: O(2™) worst-case (exponential). With memoization: O(|f| X |g|) (poly-
nomial).

10.2 Cache Structure

The cache in bdd-rs is a fixed-size hash table mapping operation keys to results:

pub struct Cache<K, V> {
data: Vec<Option<Entry<K, V>>>,
bitmask: ué4, // For fast index computation
hits: Cell<usize>, // Successful lookups
faults: Cell<usize>, // Collisions (wrong key at index)
misses: Cell<usize>, // Total unsuccessful lookups

}

struct Entry<K, V> {
key: K,
value: V,

Direct-Mapped Cache

[ Query: (a, 5, 9) ]

Index 0
hash(5,9) & mask

1 v
=3
3 (n, ref_5, ref_9) » ref_12 /

Hit: Key matches — return cached result
Fault: Different key — collision

Miss: Empty slot — compute fresh

Figure 20: The cache uses direct-mapped hashing. A query hashes to one slot; if the key matches, we have a hit.

10.2.1 Key Structure

For ITE operations, the key is a triple of references:

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum OpKey {

Ite(Ref, Ref, Ref), // ite(f, g, h)
+

The key is hashed to find an index:
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fn index(&self, key: &K) — usize {
(key.hash() & self.bitmask) as usize
}

The bitmask is size - 1 where size is a power of two, making the modulo operation a simple bitwise
AND.

10.2.2 Cache vs. Unique Table

It’s important to distinguish these two hash-based structures:

Property Unique Table Computed Table (Cache)
Purpose Hash consing (node dedup) =~ Memoization (result reuse)
Key (var, low, high) (op, f,9,h)

Value Nodeld Ref (result)
Lifetime Permanent May evict on collision
Correctness Required for canonicity Only affects performance

The unique table is essential — without it, BDDs lose canonicity. The cache is an optimization —
without it, BDDs are correct but slow.

10.3 Cache Operations
10.3.1 Lookup

pub fn get(&self, key: &K) — Option<&V>
where
K: Eq,
il
let index = self.index(key);
match &self.datalindex] {
Some(entry) = {
if &entry.key = key {
// Cache hit: exact key match
self.hits.set(self.hits.get() + 1);
Some (&entry.value)
} else {
// Cache fault: collision (different key)
self.faults.set(self.faults.get() + 1);
self.misses.set(self.misses.get() + 1);

None
I
r
None = {
// Cache miss: empty slot
self.misses.set(self.misses.get() + 1);
None
b
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10.3.2 Insert

pub fn insert(&mut self, key: K, value: V) {
let index = self.index(&key);
self.datalindex] = Some(Entry { key, value });

Insert unconditionally overwrites the slot. If another entry was there, it’s lost (but this only affects
performance, not correctness).

10.4 Cache Sizing

The cache size is specified in bits:

impl<K, V> Cache<K, V> {
pub fn new(bits: usize) — Self {
assert!(bits < 31);
let size = 1 << bits; // 2”bits entries
let bitmask = (size - 1) as ub4;
/] ...

In bdd-rs, the default is 16 bits = 65,536 entries:

impl Bdd {
pub fn new(storage_bits: usize) — Self {
let cache_bits = 16;
/] ...

10.4.1 Sizing Trade-offs

Cache Size Memory Hit Rate
Use Case 214 (16K) 0.5 MB
Lower Small problems 216 (64K)
2 MB Good Default
218 (256K) 8 MB Better
Large problems 220 (1M) 32 MB
Excellent Very large problems

Memory estimates assume 32-byte entries (key + value + padding).

i When to Increase Cache Size

If you observe:
+ Hit rate below 70%
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« Large BDDs (millions of nodes)
« Many repeated operations

Consider increasing cache bits. Double the bits roughly quadruples memory but can significantly
improve hit rates.

10.5 Collision Handling

bdd-rs uses direct-mapped caching: each key maps to exactly one slot. If two keys hash to the same
index, the newer one overwrites the older.

10.5.1 Why Direct-Mapped?

Strategy Complexity Hit Rate
Memory Direct-mapped Simple — O(1)
Lower Minimal Set-associative
Medium — O(k) for k-way Better Slight overhead
Fully associative Complex — O(n) or LRU Best

Significant overhead

Direct-mapped is the simplest and fastest, at the cost of more collisions. For BDD operations, this
trade-off usually favors simplicity:

« Operations are fast, so cache overhead matters

« Collisions lose performance but not correctness

« Memory efficiency allows larger caches

10.5.2 Collision Statistics

impl Cache<K, V> {
pub fn hits(&self) — usize; // Successful lookups
pub fn faults(&self) — usize; // Key mismatch (collision)
pub fn misses(&self) — usize; // Total failures (empty + fault)

The fault rate indicates collision frequency:

fault
fault rate = # (36)
hits 4+ misses

High fault rates suggest:
« Cache is too small
« Hash function has poor distribution
« Working set exceeds cache capacity

*, Implementation Note
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bdd-rs provides cache statistics via cache.hits(), cache.misses(), and cache.faults() . A hit
rate below 80% may indicate the cache is too small.

10.6 Hash Function Design

The cache’s effectiveness depends on a good hash function. bdd-rs uses a combination of pairing
functions and bit mixing:

// Szudzik pairing function
pub const fn pairing_szudzik(a: ué4, b: ué4) — ubs {
if a<b {
b.wrapping_mul(b) .wrapping_add(a)
} else {
a.wrapping_mul(a).wrapping_add(a).wrapping_add(b)
Iy
}

// MurmurHash3 finalizer for bit mixing
pub const fn mixé4(mut x: ub4) — ub4s {

X = x.wrapping_mul(0xff5lafd7ed558ccd);
= x >> 33;
= x.wrapping_mul(Oxc4ceb9fela85ec53);
=R e 338

X X X X

For ITE keys, the hash combines three Ref values:

impl MyHash for OpKey {
fn hash(&self) — ué4 {
match self {
OpKey::Ite(f, g, h) = A{
combine3(f.raw() as ué4, g.raw() as ub4, h.raw() as ub4)

I

10.7 Multiple Caches

bdd-rs maintains separate caches for different purposes:
10.7.1 Operation Cache

cache: RefCell<Cache<0OpKey, Ref>>

This is the main cache for ITE results. All binary operations (AND, OR, XOR, etc.) go through ITE, so
this single cache covers them all.

10.7.2 Size Cache

size_cache: RefCell<Cache<Ref, ub64>>
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The size function (counting nodes in a BDD) is cached separately:

pub fn size(&self, node_ref: Ref) — ub4 {
if let Some(&size) = self.size_cache().get(&node_ref) {
return size;

+

// ... compute size
self.size_cache_mut().insert(node_ref, size);
size

Why separate caches?
 Different key types: OpKey vs. Ref
 Different access patterns: Size is queried less frequently
« Cache pollution: Mixing would reduce hit rates

10.7.3 When to Clear Caches

Caches should be cleared when:
« After variable reordering (node indices change)
« When memory pressure is high
« Starting a new, unrelated computation phase

// In bdd-rs reordering code:
self.cache_mut().clear();
self.size_cache_mut().clear();

10.8 Cache in the Apply Flow

Here’s how caching fits into the overall Apply/ITE algorithm:

4* Algorithm: Apply with Caching

apply_ite(f, g, h):
// 1. Terminal cases (no cache needed)
if £ = 1: return g
if £ = 0: return h
// ... more terminals ...

// 2. Normalize for cache efficiency
if f.is_negated(): f = -f; swap(g, h)
if g.is_negated(): negate_result = true; g = -g; h = -h

// 3. Cache lookup
key = (f, g, h)
if key in cache:
return cache[key] // HIT: avoid recursion

// 4. Recursive computation (cache MISS)
m = top_variable(f, g, h)

(fe, f1) = cofactors(f, m)
(g8, g1) = cofactors(g, m)
(ho, h1) = cofactors(h, m)

e = apply_ite(f0, g8, hO)
t = apply_ite(f1, g1, h1)
result = mk(m, e, t)
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// 5. Cache insert
cache[key] = result
return result

The normalization step (2) is crucial for cache efficiency. Without it, ite(f, g, h) and ite(-f, h, g)
would be cached separately, wasting space and missing reuse opportunities.

10.9 Performance Analysis

10.9.1 Cache Hit Rate Impact

Consider a computation making IV recursive calls:
« With 0% hit rate: All N calls execute fully
+ With 50% hit rate: N /2 calls execute fully
« With 90% hit rate: N /10 calls execute fully

Since each call involves node construction, cache lookup, and potentially allocation, the savings
compound.

10.9.2 Measuring Cache Effectiveness

let bdd = Bdd::default();
// ... perform operations ...

let cache = bdd.cache();
let hits = cache.hits();
let misses = cache.misses();
let faults cache.faults();

let total = hits + misses;
let hit_rate = hits as f64 / total as fé4;
let fault_rate = faults as f64 / total as fé4;

println! ("Hit rate: {:.1}%", hit_rate * 100.0);
println! ("Fault rate: {:.1}%", fault_rate * 100.0);

I\ Cache Pitfall

A high hit rate doesn’t always mean good performance. If the working set is small, even a tiny
cache has high hit rate. Compare absolute hit counts and execution time, not just percentages.

10.10 Summary
The computed table is simple in concept but critical in practice:

Structure: Fixed-size hash table with direct mapping
Key: Normalized operation triple (f, g, h)

Collision handling: Overwrite (lossy but fast)
Sizing: Power of two, typically 2! to 22°

SNl Ol S

Statistics: Track hits, misses, faults for diagnostics
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The cache transforms BDD operations from exponential to polynomial complexity, making the entire
data structure practical for real-world use.
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Chapter 11

Complement Edges

What if negating a BDD took zero time? Not “fast” — literally zero. Just flip one bit, and f becomes — f.

This is what complement edges achieve. They are one of the most elegant optimizations in BDD
technology: negation becomes O(1), memory usage drops (since f and —f share all structure), and
the Apply algorithm gets powerful new terminal cases.

The tradeoff? Careful bookkeeping to maintain canonicity. This chapter explains the concept, the
implementation, and the subtle invariants.

11.1 The Problem: Redundant Negations

In standard BDDs, f and —f are completely separate structures.

T -z

! Different nodes! .
" \\
’ A\
y 4
[o] [o]
Figure 21: Without complement edges: © and —x require separate nodes with swapped children.

This is wasteful. If your formula uses both g and —g for some complex subformula g, you store the
entire g structure twice. Negation takes O(|g|) time to rebuild everything,.

11.2 The Solution: Annotated Edges

The insight: instead of negating the nodes, negate the edge.
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4
[o]

Same node, different edge annotations.
The circle marks a complement edge.

Figure 22: With complement edges: f and —f share the same node. The small circle indicates negation.

Definition (Complement Edge)
A complement edge is an edge annotated with a negation flag. Following a complemented
edge inverts the semantics of the subgraph. This allows f and —f to share the same underlying

structure.

11.3 The Benefits

11.3.1 Space Reduction

Every function f in the BDD implicitly provides —f for free. In practice, this can reduce node count
by 30-50%.

Consider a formula like (a Ab) @ (c A d). XOR involves negation: p@® g = (p A —~q) V (—p A q).
Without complement edges, we’d duplicate the (a A b) and (¢ A d) subgraphs. With them, we just

mark edges as complemented.

11.3.2 O(1) Negation
This is the killer feature. Negating a BDD becomes a single bit operation:

impl Neg for Ref {
fn neg(self) — Self {
Self(self.0 ~ 1) // XOR flips the lowest bit

F

In Rust, you just write -f and get the negated BDD instantly. No traversal. No new nodes. No

allocation.

¢ Key Insight

¢

The O(1) negation ripples through the entire library. XOR, equivalence, and implication all
involve negation internally. They all become faster because negation is free.
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11.4 Implementation in bdd-rs

The complement bit is packed into the Ref type itself:

31 1 0
Node Index (bits 1-31) @
Which node in storage Neg?

Figure 23: Bit layout of Ref : the complement flag occupies the lowest bit.

This encoding means:

« Ref(8) =node 0, positive = TRUE (terminal)
+ Ref(1) =node 0, negated = FALSE

+ Ref(4) =node 2, positive

« Ref(5) =node 2, negated

The API is straightforward:

impl Ref {
pub fn id(self) — Nodeld {
NodeId::from_raw(self.0 >> 1) // Shift right to get index
+

pub fn is_negated(self) — bool {
(self.0 & 1) == 0 // Check lowest bit
b

11.5 The Canonicity Challenge

Complement edges create an ambiguity. Consider a node for variable z:

(A) (B) with — at root

© O

<N RN

L h - —h

These represent the same function!
We need a rule to pick one.

Figure 24: Ambiguity: mk(x, 1, h) and -mk(x, -1, -h) represent the same function.
Without a normalization rule, canonicity breaks — two different structures for the same function.

11.5.1 The Solution: High Edge Convention

bdd-rs enforces: high edges are never complemented.

When mk_node would create a node with a complemented high edge, it flips everything:
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pub fn mk_node(&self, v: Var, low: Ref, high: Ref) — Ref {
// Canonicity rule: high edge must be positive
if high.is_negated() {
// Flip: -mk(v, -low, -high) = mk(v, low, high)
return -self.mk_node(v, -low, -high);
+

// ... proceed with normal node creation

I\ The Rule Must Be Consistent

The choice of “high never complemented” vs “low never complemented” is arbitrary. What
matters is consistency. CUDD uses low-never-complemented. bdd-rs uses high-never-comple-
mented. Pick one and stick to it.

11.6 Traversal with Complements

When traversing a BDD, complement flags must propagate correctly:

pub fn low_node(&self, node_ref: Ref) — Ref {
let low = self.low(node_ref.id());
if node_ref.is_negated() {
-low // Propagate the complement
} else {
Tow

}

pub fn high_node(&self, node_ref: Ref) — Ref {
let high = self.high(node_ref.id());
if node_ref.is_negated() {
-high // Propagate the complement
} else {
high
+

If you're at a complemented reference, both children become complemented. This propagation con-
tinues to the terminals, flipping the final result.
i Evaluation Rule

A path evaluates to TRUE if it reaches the TRUE terminal through an even number of comple-
ment edges. An odd number of complements flips the result to FALSE.

11.7 Terminal Handling
With complements, there’s one physical terminal but two logical constants:

Complement edges introduce an ambiguity: f and —f have the same underlying graph. To maintain
canonicity, we need a normalization rule.
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11.7.1 The Problem

Consider a node with children low and high:
+ mk(x, low, high) represents (—z Alow) V (z A high)
+ mk(x, -low, -high) represents (—x A — low) V (z A — high)

These are negations of each other! Without normalization, we’d have two representations for the same
function.

11.7.2 The Solution: High Edge Convention

bdd-rs uses the convention: high edges are never complemented.

If we try to create a node where high.is_negated() , we flip everything:

pub fn mk_node(&self, v: Var, low: Ref, high: Ref) — Ref {
// Canonicity: high edge must be positive
if high.is_negated() {
return -self.mk_node(v, -low, -high);

Iy
// ... rest of mk_node

I\ Normalization Required

With complement edges, we must enforce a normalization rule to maintain canonicity. In
bdd-rs, the convention is: high edges are never complemented. If a high edge would be
complemented, we complement the entire node instead.

11.7.3 Why High Edge?

The choice of “high edge never complemented” vs “low edge never complemented” is arbitrary but
must be consistent. The high-edge convention is common in the literature and has some advantages:
« Terminal 1 is the “natural” positive terminal
« Following the high edge often represents the “true” case

11.7.4 Alternative: Low Edge Convention

Some libraries use the opposite: low edges are never complemented. CUDD, for example, uses this
convention. The important thing is consistency, not the specific choice.

11.8 Impact on Traversal

When traversing a BDD with complement edges, we must propagate the complement flag:

pub fn low_node(&self, node_ref: Ref) — Ref {
let low = self.low(node_ref.id());
if node_ref.is_negated() {
-low // Propagate complement
} else {
Tow

}
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pub fn high_node(&self, node_ref: Ref) — Ref {
let high = self.high(node_ref.id());
if node_ref.is_negated() {
-high // Propagate complement
} else {
high
+

If we're at a negated reference, both children become negated. This maintains the semantic invariant:
following a complemented edge negates everything below.

i Propagation Rule

When traversing through a complemented reference:
« The children are also complemented
+ This propagates down to the terminals

A path to terminal 1 through an odd number of complemented edges evaluates to 0.

11.9 Impact on Terminal Detection

With complement edges, we have one physical terminal node but two logical constants:

// Physical: one terminal node at index 0
// Logical: one = @0, zero = ~@0

impl Bdd {
pub fn is_one(&self, r: Ref) — bool {
r.raw() = self.one.raw() // Non-negated terminal

+
pub fn is_zero(&self, r: Ref) — bool {
r.raw() = self.zero.raw() // Negated terminal
+
pub fn is_terminal(&self, r: Ref) — bool {

r.id().raw() = 0 // Either constant
+

The distinction:
o is_terminal(r) :Is this a constant (either 0 or 1)?
« is_one(r) / is_zero(r): Which specific constant?

11.10 Impact on Operations

11.10.1 ITE Normalization

The Apply/ITE algorithm must normalize its arguments for cache efficiency:

pub fn apply_ite(&self, f: Ref, g: Ref, h: Ref) — Ref {
/...
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// Normalize: f should not be negated
// ite(~-f, g, h) = ite(f, h, g)
let (mut f, mut g, mut h) = (f, g, h);
if f.is_negated() {

f = -f;

std::mem:: swap(&mut g, &mut h);
+

// Normalize: g should not be negated
// ite(f, -g, h) = -ite(f, g, -h)
let mut negate_result = false;
if g.is_negated() {
negate_result = true;

g = -9;
h = -h;
+
// ... compute result

if negate_result { -result } else { result }

This normalization ensures that equivalent computations hit the same cache entry:

. ite(f, g, h) and ite(-f, h, g) — same cache key
« ite(f, g, h) and ite(f, -g, -h) — same cache key (result negated)

11.10.2 XOR Simplification

XOR has a special relationship with complement edges:

f@g=~(f®—g)

This means many XOR computations reduce to existing results with a complement:

pub fn apply_xor(&self, f: Ref, g: Ref) — Ref {
// f&1 =-f (just flip the bit!)
if self.is_one(g) {
return -f;
+
/| f&-f=1
if f = -g{
return self.one;
+
// General case: ite(f, -g, g)
self.apply_ite(f, -g, g)

11.10.3 Equivalence Testing

Equivalence becomes truly O(1):

// £ = g iff they're the same Ref (including complement bit)
f g // Direct comparison

/| f = -g iff f = -g

f = -¢g

No traversal needed — just compare the 32-bit values.

84

Chapter 11.10.1

(37)



BINARY DEcisiON DIAGRAMS Chapter 11.10.3

11.11 Trade-offs

11.11.1 Advantages

. Space: Up to 50% fewer nodes

. Negation: O(1) instead of O(] f])

. XOR/Equivalence: Significant speedups

. Equality: O(1) for both f = gand f = —g

B W NN

11.11.2 Disadvantages

1. Complexity: Every algorithm must handle complements correctly
2. Bugs: Easy to forget complement propagation

3. Cache keys: Must normalize to avoid redundant entries

4. Debugging: Output is harder to interpret

Aspect Without Complement Edges = With Complement Edges
Negation Oo(|f]) 0(1)

Node count Higher Up to 50% less
Equality check O(1) O(1)

Algorithm complexity Simpler More complex
Debugging Easier Harder

11.11.3 When Complement Edges Hurt

In rare cases, complement edges can slightly hurt cache performance. The normalization in ITE can
cause cache thrashing if the working set has many complementary pairs. However, this is unusual —
the space and negation benefits almost always dominate.

11.12 Visualization Considerations
When outputting BDDs (e.g., to DOT format), complement edges require special handling:

// In DOT output:
if edge.is_negated() {

// Show as dashed line or with "~" label

println! (" {} — {} [style=dashed];", from, to);
} else {

println! (" {} — {};", from, to);

}

Without this, the output would be confusing — two identical-looking graphs could represent different
functions.

11.13 Summary
Complement edges are a powerful optimization:

1. Representation: Encode negation in the low bit of Ref
2. Canonicity: Enforce “high edge never complemented” rule
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3. Traversal: Propagate complement flag through children
4. Operations: Normalize arguments for cache efficiency
5. Benefits: O(1) negation, space reduction, faster XOR

The added complexity is well worth the performance gains. Nearly all production BDD libraries use
complement edges.
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Chapter 12

Variable Ordering

Variable ordering is the Achilles’ heel of BDDs. The same Boolean function can have a linear-sized
BDD under one ordering and an exponential-sized BDD under another. Understanding and controlling
variable ordering is essential for practical BDD use — it often makes the difference between a solution
in milliseconds and a computation that never terminates.

12.1 Why Ordering Matters

The size of a BDD depends critically on the variable ordering. This is not merely a constant factor —
it is the difference between tractable and intractable, between success and failure.

Good Ordering: z; < y; < x5 < Yy Bad Ordering: v, < z, < y; <y,

O, e
@ ONENO
O, OO ©
O,

Function: (27 Ayy) V (29 A ys)

Figure 25: The same function with different orderings: linear vs. exponential size.
I\ Ordering Can Make or Break Performance

For the function f = (1 Ayy) V (g Ays) V... V (z, Ay,,):
+ Interleaved ordering z; < y; < 25 < Yy, < ...: O(n) nodes
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+ Separated ordering z; < , < ... < y; < Yy < ...: O(2") nodes

The difference grows with n — for n = 20, this is 40 nodes vs. over a million!

12.1.1 The Intuition
Why does interleaved ordering work better? Consider what happens when we decide z; = 0 in each

ordering:

+ Interleaved: The term x; A y; becomes 0. Variable y, is tested next, but it doesn’t matter — we
move directly to z,. The subproblem simplifies.

+ Separated: After deciding all z,, we still need to track which x, were 1 to know which y, matter.
This “remembering” causes exponential blowup.

¢ Key Insight

Good orderings keep related variables close together. When x and y appear in a term = A v,
testing them consecutively allows early simplification.

12.2 Static Ordering Heuristics

Before building a BDD, we can choose an initial ordering based on the structure of the input.

12.2.1 DFS Ordering
For circuits, a depth-first traversal from outputs to inputs often produces good orderings:
fn dfs_ordering(circuit: &Circuit) — Vec<Var> {
let mut order = Vec::new();
let mut visited = HashSet::new();
for output in circuit.outputs() {

dfs_visit(output, &mut order, &mut visited);

F

order

Variables encountered earlier in DFS tend to be “closer” to outputs and get lower indices.

12.2.2 FORCE Algorithm

The FORCE algorithm iteratively improves ordering by minimizing a “span” metric — how far apart
related variables are placed:

$* Algorithm: FORCE Heuristic

FORCE(clauses, iterations):
ordering = initial_random_ordering()

for i in 1..iterations:
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for each variable v:
// Compute center of gravity
cog = average position of variables
that share a clause with v

// Move v toward its COG
target[v] = cog

// Sort variables by target position
ordering = sort_by(target)

return ordering

12.3 Dynamic Variable Reordering

Even with good heuristics, the initial ordering may become suboptimal as computation proceeds.
Dynamic reordering adjusts the ordering during BDD operations.

12.3.1 The Sifting Algorithm
Sifting (Rudell, 1993) is the most widely used reordering algorithm:

Sifting: Finding the Best Position
Sifting variable y...

o Level 0
$Y$ size = 150 Level 1
b2 size = 120 v best Level 2

$w$ X Level 3
return size = 180

size = 200

Figure 26: Sifting moves a variable through all positions, tracking where total BDD size is minimized.

£ Algorithm: Sifting (Rudell 1993)

Sifting():
for each variable v (in decreasing size order):
best_pos = current_level(v)
best_size = total_nodes()

// Move v down through all levels
while not at_bottom(v):
swap_adjacent(v, below(v))
if total_nodes() < best_size:
best_pos = current_level(v)
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best_size = total_nodes()

// Move v back up to best position
while current_level(v) > best_pos:
swap_adjacent(above(v), v)

12.3.2 Level Swapping

The core operation in sifting is swapping adjacent levels. This is a local operation that only affects
nodes at those two levels:

Before Swap After Swap

swap .

,* Gé
Fhe o bk

Figure 27: Swapping levels x and y restructures the BDD while preserving the function.

The swap operation:
1. Takes each node at the upper level
2. Computes new children based on the grandchildren
3. Creates new nodes at both levels as needed
4. Updates the unique table

12.4 Reordering in bdd-rs

bdd-rs provides explicit variable ordering control through the var_order and level_map data struc-
tures:

// Get the level of a variable
let level: Level = bdd.get_level(var)?;

// Get the variable at a level
let var: Var = bdd.get_var_at_level(level);

// Iterate variables in order
for level in 0..bdd.num_levels() {

let var = bdd.get_var_at_level(Level(level));
// Process variables top-to-bottom

i Current Capabilities
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bdd-rs currently supports:
« Explicit variable ordering during construction
+ Level/variable mapping queries
« Manual ordering specification

Dynamic reordering (sifting) is planned for future releases.

12.5 Ordering for Specific Domains

Different problem domains have different optimal ordering strategies.

12.5.1 Circuits

For circuits, follow signal flow — inputs near the top, internal signals in the middle, outputs near the
bottom. Variables that share gates should be adjacent.

12.5.2 Transition Relations

For symbolic model checking with transition relations on state variables (s, ..., s,,) and next-state
variables (s7, ..., s),):

« Interleaved: s; < 5] < s, < s5 < ... (usually best)
« Separated: s; < s, < ... < s] < s < ... (often exponential)

12.5.3 Arithmetic

For arithmetic functions like addition or multiplication:
« MSB-first: Often better for multiplication
« LSB-first: Often better for addition
+ Experiment with both!

Domain Strategy Rationale
Circuits Follow signal flow Related signals stay close
FSMs Interleave state/next Transition locality
Arithmetic Try both MSB/LSB Problem-dependent
Feature models Respect hierarchy Parent before children
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Chapter 13

Garbage Collection

BDD operations create nodes. Lots of nodes. An operation like f AND g may produce thousands of
intermediate nodes, only to discard most of them when the final result emerges. Without cleanup,
memory consumption grows without bound.

This chapter covers garbage collection — the art of reclaiming dead nodes while preserving live ones.

13.1 The Memory Problem

Every mk call potentially allocates a new node. Every Apply operation recursively calls mk many times.
Consider this innocent-looking code:

let a = bdd.and(x, y);
let b = bdd.and(a, z);
let ¢ = bdd.or(b, w); // We only care about c

What happens to the intermediate nodes created for a and b ?If ¢ shares structure with them, they’re
still needed. If not, they’re garbage — consuming memory but serving no purpose.

Memory Growth Without GC

Memory
—— Allocated
— tually live
Garba,
Time
[S) 031 op: ops opa ops

Figure 28: Without garbage collection, allocated memory grows far beyond what’s actually needed.

I\ The Danger of Unbounded Growth
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A verification run might perform millions of BDD operations. Without GC, you’ll run out of
memory long before finding the bug you’re looking for.

13.2 What Counts as Garbage?

Definition (Reachability)

A node is live (reachable) if:
1. It’s a root — a BDD the user explicitly keeps, or
2. It’s reachable from a root via low/high edges

Everything else is garbage.

Live vs. Garbage Nodes

v X X

LIVE GARBAGE
[o] [1]

No root points to these nodes = they can be reclaimed

Figure 29: Live nodes are reachable from a root; garbage nodes have no path from any root.

¢ Key Insight

v

Shared structure complicates things. A node might be reachable from multiple roots. We can
only reclaim it when all roots that could reach it are gone.

13.3 Mark-and-Sweep Collection

The classic garbage collection algorithm has two phases:
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Phase 1: Mark Phase 2: Sweep
( ) ( )
Start from roots Scan all nodes
Traverse all edges Unmarked? Reclaim!
—
Mark visited nodes Update unique table
Marked = Live v Garbage freed X
. J . J

Also: Clear Caches

[Cached results may reference freed nodesﬂ

Figure 30: Mark-and-sweep GC: mark what’s live, sweep away the rest.

£ Algorithm: Mark-and-Sweep GC

collect_garbage(roots):
// == MARK PHASE ==
marked = empty_bitset(num_nodes)
for root in roots:
mark_recursive(root, marked)

// == SWEEP PHASE =
for node_id in 1..num_nodes: // Skip terminal at 0
if not marked[node_id]:
// Remove from unique table
level = get_level(node_id)
subtables[level].remove(node_id)
// Add to free list for reuse
free_set.insert(node_id)

// == CACHE INVALIDATION =
operation_cache.clear()
size_cache.clear()

mark_recursive(ref, marked):
if ref.is_terminal() or marked[ref.id()]:
return
marked[ref.id()] = true
node = nodes[ref.id()]
mark_recursive(node.low, marked)
mark_recursive(node.high, marked)

13.3.1 Why Clear Caches?

The operation cache stores entries like (AND, f, g) » h.Ifnode h gets garbage-collected, this cache
entry becomes dangling — it points to freed memory.

I\ Dangling Cache Entries

If we don’t clear caches after GC:
1. A future operation looks up (AND, f, g)
2. Cache returns stale reference h
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3. The slot for h might now hold a completely different node!
4. Result: silent corruption, wrong answers

Always invalidate caches after garbage collection.

13.4 Reference Counting Alternative

Instead of periodic mark-and-sweep, we could track references to each node:

Aspect Mark-and-Sweep Reference Counting
When reclaimed  During GC pauses Immediately when count hits 0
Overhead None between GCs Every reference update
Pause times Can be long None (incremental)

Cycles Handles fine Problematic (but DAGs don’t cycle)
Implementation Simpler Pervasive ref management

i Why bdd-rs Uses Mark-and-Sweep

BDDs are DAGs (no cycles), so reference counting would work. However:
+ Reference count updates add overhead to every operation
« BDD operations are cache-bound; extra memory traffic hurts
« Batch GC integrates well with explicit root management

Most BDD libraries, including CUDD, use mark-and-sweep.

13.5 GC in bdd-rs

bdd-rs uses explicit garbage collection — you decide when to collect and what to keep:

// Build some BDDs

let formulal = bdd.and(x, y);

let formula2 = bdd.or(y, z);

let combined = bdd.and(formulal, formula2);

// We only need 'combined' going forward
bdd.collect_garbage(&[combined]);

// Now formulal and formula2 may have been freed
// (unless 'combined' shares structure with them)

The free_set tracks which node slots are available for reuse:

pub struct Bdd {
nodes: RefCell<Vec<Node>>,
free_set: RefCell<HashSet<NodeId>>, // Available slots
/...
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fn allocate_node(&self, node: Node) — NodeId {
let mut free_set = self.free_set.borrow_mut();
if let Some(&id) = free_set.iter().next() {
// Reuse freed slot
free_set.remove(&id);
self.nodes.borrow_mut()[id.raw()] = node;
id
} else {
// Allocate new slot
let id = NodeId::new(self.nodes.borrow().len() as u32);
self.nodes.borrow_mut().push(node);
id

13.6 When to Collect

¢ Key Insight

L

GC is expensive — it touches all live nodes and clears all caches. Time it wisely.

Good times to collect:
1. After major phases: Finished building a transition relation? Collect before model checking.
2. When memory is tight: Monitor allocation and trigger GC at thresholds.
3. Before long-running operations: A clean heap means better cache behavior.

Bad times to collect:
+ Inside tight loops: The overhead dominates.
« Mid-computation: You might need those “intermediate” results!
+ Without knowing your roots: You’ll lose data.

// Good: collect between phases
let transition_rel = build_transition_relation(&bdd);
bdd.collect_garbage(&[transition_rell);

let reachable = compute_reachability(&bdd, transition_rel);
bdd.collect_garbage(&[reachable]);

// Bad: collect inside a loop

for i in 0..1000 {
let step = bdd.and(current, constraint);
bdd.collect_garbage(&[stepl); // DON'T DO THIS!
current = step;

Performance

As arule of thumb: if your BDD manager has grown to 2x the live node count, it’s time to collect.
Many libraries trigger automatic GC at such thresholds.
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Chapter 14

Quantification and Abstraction

Quantification eliminates variables from Boolean functions. It answers questions like “does some
assignment to x make f true?” (existential) or “is f true for every value of 2?” (universal).

These operations are the bridge between BDDs and symbolic reasoning. Model checking, constraint
solving, and image computation all rely heavily on quantification to project away variables and reduce

problem dimensionality.

14.1 Existential Quantification

Definition (Existential Quantification)

The existential quantification of f with respect to variable z is:
Ele = f|z=0 v f|z=1 (38)

Intuitively, Jz. f is true if f can be made true by some choice of z.

The result is a function that no longer depends on x. We've “projected away” that variable.

Original: f =z Ay Result: 3z.f =y

(zAy)=0Ay)V(IAYy)=0Vy=y

Figure 31: Existential quantification eliminates x by OR-ing the two cofactors.
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14.1.1 Computing Existential Quantification

pub fn exists(&self, f: Ref, x: Var) — Ref {
let low = self.cofactor(f, x, false); /] fl_{x=0}
let high = self.cofactor(f, x, true); // fl_{x=1}
self.or(low, high) // low v high

14.2 Universal Quantification

Definition (Universal Quantification)

The universal quantification of f with respect to variable z is:
Vl‘f = f|z=0 A f|z=1 (39)

Vz.f is true only if f is true for all choices of x.

Universal quantification is the dual of existential quantification. It’s more restrictive — requiring f to

hold regardless of z.

Original: f =z Vy Result: Vz.f =y

. YV .

Ve (zVy)=0Vy) A(lVy)=yAl=y
Figure 32: Universal quantification eliminates x by AND-ing the two cofactors.
14.2.1 Computing Universal Quantification

pub fn forall(&self, f: Ref, x: Var) — Ref {
let low = self.cofactor(f, x, false); // fl_{x=0}
let high = self.cofactor(f, x, true); // fl_{x=1}
self.and(low, high) // low A high

14.3 Multiple Variable Quantification

Often we need to quantify over multiple variables at once. The order of quantification matters for

performance (though not correctness).
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¢ Key Insight

Rule of thumb: Quantify variables from the bottom of the BDD upward. This keeps interme-
diate results smaller because bottom variables affect fewer nodes.

14.3.1 Cube-Based Quantification

Variables to quantify are often represented as a cube — a conjunction of variables:

// Quantify over {x, y, z} represented as cube = X A y A Z
pub fn exists_cube(&self, f: Ref, cube: Ref) — Ref {

if self.is_one(cube) {

return f; // No more variables to quantify

+

let var = self.top_var(cube);

let remaining = self.high(cube); // Rest of cube

let quantified = self.exists(f, var);

self.exists_cube(quantified, remaining)

14.4 Relational Product

The relational product (also called and-exists) combines conjunction with existential quantification:
RelProd(f,g,X) =3X.(f A g) (40)

This operation is critical for symbolic model checking, where it computes reachable states.

Relational Product: 3X.(f A g)

f g

current states transition relation

A

[ fAg ]ﬁ [ next states ]

Figure 33: Relational product computes the image (next states) in one combined operation.

14.4.1 Why Combine Operations?

Computing 3X.(f A g) as two separate steps can create huge intermediate results. The combined
algorithm quantifies variables during the conjunction, keeping BDDs smaller.

3 Algorithm: Relational Product (And-Exists)
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RelProduct(f, g, cube):
if f =0 or g = 0:
return 0
if is_one(cube):
return And(f, g)
if f = 1 and g = 1:
return 1

v = top_var_of(f, g, cube)

if v in cube:
// Quantify this variable
f_low, f_high = cofactors(f, v)
g_low, g_high = cofactors(g, v)
cube' = remove(v, cube)

r_low = RelProduct(f_low, g_low, cube')
r_high = RelProduct(f_high, g_high, cube')
return Or(r_low, r_high)

ellse:
// Regular conjunction recursion
// ... standard Apply-style recursion

14.5 Complexity Considerations

Quantification can cause significant BDD growth.

I\ Quantification Blowup

While cofactors can only shrink, their OR (or AND) can create BDDs much larger than the
original. A single existential quantification can square the BDD size in the worst case.

14.5.1 Early Quantification
When computing 3z.(f; A fo Ao A f,):

« Naive: Compute all conjunctions, then quantify

+ Better: Quantify x as soon as it appears in only one remaining term

¢ Key Insight

Early quantification keeps intermediate BDDs smaller by eliminating variables as soon as
they’re no longer needed. This is a key optimization in symbolic model checking.

14.6 Applications

Quantification is used throughout symbolic reasoning:

Application Operation Purpose
Reachability AX.(RAT) Compute next states
Verification VX.(P— Q) Check implication

101



BINARY DEcisiON DIAGRAMS Chapter 14.6

Projection Jy.f Hide internal variables

Consensus V. f Variables that don’t matter
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Chapter 15

BDD Variants

Standard ROBDDs are just one point in a rich design space. By tweaking the reduction rules, terminal
values, or structural constraints, we get different data structures — each optimized for different problem
domains.

This chapter surveys the most important variants: ZDDs for sparse combinatorics, ADDs for numeric
computations, and others that have found their niche.

15.1 Beyond Binary Decisions

ROBDDs represent functions f : B™ — B — Boolean inputs, Boolean output. But many real problems
involve:

+ Sparse sets: Most elements absent (SAT solving, graph algorithms)

« Numeric values: Probabilities, costs, timing constraints

+ Multi-valued logic: More than two truth values

Different BDD variants address each of these needs.

BDD Variant Landscape

ROBDD ADD/MTBDD

B > B Set families :B" >R
Boolean functions Sparse sets Numeric functions
Verification, synthesis Combinatorics, SAT Probability, costs

Shared Foundation

DAG structure, memoization, canonicity

Figure 34: BDD variants share core ideas but differ in reduction rules and terminal values.

15.2 Zero-Suppressed BDDs (ZDDs)

ZDDs, introduced by Minato in 1993, are optimized for sparse set families — collections where most
elements are absent from most sets.
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Definition (Zero-Suppressed Decision Diagram)

A ZDD uses a different reduction rule than BDDs:
« BDD rule: Delete node if low = high
« ZDD rule: Delete node if high = 0 (redirect to low)

This makes ZDDs compact when sets are sparse.
The key insight: in a family of sparse sets, most elements are absent from most sets. The ZDD rule
lets us skip mentioning absent elements entirely.

BDD Representation ZDD Representation

© ()

’
4
4
’

® O e O

{{a}}

© 00 O

[o]

Many nodes for sparse set Nodes for b,c suppressed!

Figure 35: For the set family {{a}} over universe {a, b, c}: BDD needs nodes for all variables; ZDD only needs one.

15.2.1 When to Use ZDDs

Use Case BDD ZDD
Dense Boolean functions Excellent Poor
Sparse set families Poor Excellent
Combinatorial enumeration Moderate  Excellent

Graph problems (cliques, paths)  Moderate  Excellent

Circuit verification Excellent Moderate

¢ Key Insight

ZDDs shine in problems where you’re enumerating sets of things — solutions to combinatorial
problems, satisfying assignments, graph substructures. Knuth dedicated an entire section of
TAOCP Volume 4B to ZDDs.
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15.3 Algebraic Decision Diagrams (ADDs)

ADDs (also called MTBDDs — Multi-Terminal BDDs) generalize BDDs to functions with arbitrary

terminal values.

Definition (Algebraic Decision Diagram)

An ADD represents functions f : B — D where D is any set. Common choices:
+ D = R (real numbers) for probabilities, costs
+ D = Z (integers) for counts
« D={0,1, ..., k} for multi-valued logic

ADD Example: Probability Function

DOhl DO.Q

P(rain | cloud, wind): probability depends on weather conditions

Figure 36: An ADD representing probability of rain given cloud cover and wind conditions.

15.3.1 Applications of ADDs
« Probabilistic model checking: Represent transition probabilities
« Cost functions: Assign costs to state combinations
« Reward structures: Accumulate rewards over paths
+ Matrix operations: Sparse matrix-vector multiplication

// Conceptual ADD operations

fn add_value(&self, f: AddRef, g: AddRef) — AddRef {
// Terminal case: add numeric values
// Recursive case: like BDD Apply

fn max_value(&self, f: AddRef, g: AddRef) — AddRef {
// Take maximum at terminals

15.4 Edge-Valued BDDs (EVBDDs)

EVBDDs put numeric values on edges rather than at terminals. This can be more compact for certain

functions.
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Definition (Edge-Valued BDD)

An EVBDD has:
« A single terminal node (value 0)
« Numeric weights on each edge

« Function value = sum (or product) of edge weights on path

This is particularly compact for linear arithmetic functions.

EVBDD for f = 2z + 3y

Example:z =1,y =1

+0 +2 Path: +2+3=5 v

(2-1+3-1=5)

+0 +3

[o]

Figure 37: EVBDD encodes 2z + 3y with edge weights; only one terminal needed.

15.5 Free BDDs (FBDDs)

Free BDDs relax the variable ordering constraint:

Definition (Free BDD)

In an FBDD (Free BDD), each path can use a different variable ordering. The only constraint:
each variable appears at most once per path.

FBDDs are also called read-once branching programs.

Property ROBDD FBDD
Ordering Global (same for all paths) Per-path (can vary)
Canonicity Yes (given ordering) No
Compactness Depends on ordering Always at least as good
Operations Efficient (polynomial) Can be expensive
Equivalence check O(1) coNP-complete
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I\ The Price of Freedom

FBDDs can be exponentially smaller than any ROBDD, but:
« They’re not canonical — equivalence checking is hard
+ Operations like AND can be expensive
+ Most BDD libraries don’t support them

FBDDs are mainly of theoretical interest and for specific one-shot computations.

15.6 Choosing the Right Variant

¢ Key Insight

<

The best variant depends on your problem:
+ Verification/synthesis: ROBDD (canonical, efficient operations)
« Combinatorial enumeration: ZDD (sparse sets)
+ Probabilistic reasoning: ADD/MTBDD (numeric terminals)
 Arithmetic functions: EVBDD (edge values)

bdd-rs focuses on ROBDDs with complement edges — the sweet spot for most verification tasks.
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Chapter 16

Model Checking with BDDs

In 1987, Ken McMillan demonstrated that BDDs could verify systems with 1020 states — far beyond
what explicit enumeration could ever hope to reach. This breakthrough, called symbolic model
checking, revolutionized hardware verification and remains one of BDDs’ most celebrated applica-
tions.

This chapter shows how BDDs transform the impossible into routine.

16.1 The State Explosion Problem

Consider a simple system: 100 flip-flops. How many possible states? 210 ~ 1030, At a billion states
per second, explicit enumeration would take 103 years — longer than the age of the universe.

State Space Explosion

states

Explicit: impossible

32 bits
Explicit: feasible

10 bits

bits
103 10° 1030

Figure 38: State spaces grow exponentially with the number of state bits.

Yet real hardware has thousands of flip-flops. The key insight: we don’t need to enumerate states
individually.

¢ Key Insight

BDDs represent sets of states as Boolean functions. A BDD with 1000 nodes can represent 102°
states. Operations on BDDs manipulate entire sets at once.
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16.2 Encoding States and Transitions

The key insight of symbolic model checking is representing state sets as Boolean functions rather than

enumerating individual states.

A finite-state system consists of:

« State variables = (z, ..., z,,): Boolean variables encoding the current state

+ Next-state variables ' = (27, ..., z,,): Primed copies for the next state

« Transition relation 7T'(x, z): A Boolean function capturing all legal transitions
Initial states I(x): Boolean function true exactly on starting states
Property P(x): Boolean function characterizing “good” or “bad” states

.. Example — Two-Bit Counter
A counter with state bits zy, 2 counts0 -1 —2 =3 =0 — ...

Transition relation:
T(zg, 1,75, %1) = (Tg <> 7xo) A (21 € (71 D 7)) (41)

Initial state (start at 0):
I(zg, 1) = ~@o A~ (42)

State Transition Diagram vs. BDD

Explicit: 4 states Symbolic: BDD for T’

[o] L]

BDD encodes all transitions in one compact structure

ONO
ONO

Figure 39: Explicit representation lists states; symbolic representation encodes the transition function.

16.3 Reachability Analysis

The fundamental question: can the system ever reach a bad state?

If we can compute the set of all reachable states, verification becomes trivial: check whether any bad
state is reachable. The challenge is computing this set without enumerating states individually.
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16.3.1 Forward Reachability

Starting from initial states, repeatedly compute successors until reaching a fixpoint — a point where

no new states appear:

4* Algorithm: Symbolic Reachability (Forward)

Reachable(Init, Trans):
Reached = Init
repeat:
Reached_old = Reached
Reached = Reached U Image(Reached, Trans)
until Reached = Reached_old
return Reached

The Image operation computes successor states:

Image(S,T) = 3. T(x,z") A S(x) (43)
Symbolic Reachability
R = " "
0 T ste +2 steps Fixpoint
me | 0 e -
= ] ]

Each R, is a single BDD representing 102 states

Figure 40: Reachability iterates until the set of reached states stabilizes.

16.3.2 Why This Works
The magic: each iteration manipulates BDDs, not individual states. Consider the scale difference:
« S might represent 10! states — more than atoms in a human body
+ The BDD for S might have only 5000 nodes
« Image computation operates on these 5000 nodes, taking milliseconds
« Result: a BDD for the next frontier, perhaps 6000 nodes representing 106 states

¢ Key Insight

L

BDD size depends on the structure of the function, not the number of satisfying assignments.
Regular, structured systems often have compact BDD representations even with huge state

spaces.

16.4 CTL Model Checking

CTL (Computation Tree Logic) expresses temporal properties:
« EF P: “Eventually P might hold” (exists a path where P eventually true)
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« AG P: “Always globally P” (on all paths, P always true)
« EG P: “Exists a path where P is always true”
« AF P: “On all paths, P eventually holds”

Definition (CTL Semantics via Fixpoints)

CTL operators can be computed as fixpoints:
« EF P=puZ.(PV EX Z) — least fixpoint
« EG P=vZ.(P NEX Z) — greatest fixpoint
« AF P=pZ.(PVAX 2)
« AGP=vZ.(PNAX Z)

Where EX S = Prelmage(S) and AX S = - EX(-5).

4* Algorithm: Computing EF (Backward Reachability)

EF(P, Trans):
Z = False // Start with empty set
repeat:
Z_old = Z
Z = P v PreImage(Z, Trans)
until Z = Z_old
return Z // States that can reach P

16.5 Image and Prelmage Computation

These are the workhorses of symbolic model checking:

Operation Computes Formula

Image Successors of .S Jz.T(x,2') A S(x)
Prelmage Predecessors of S Ja’.T(x,x’) A S(x’)

Implementation uses relational product (And-Exists) for efficiency:

fn image(&self, states: Ref, trans: Ref) — Ref {
// Conjoin states with transition relation
let conjoined = self.and(states, trans);
// Quantify out current-state variables
let next = self.exists_cube(conjoined, current_vars);
// Rename x' back to x
self.rename(next, next_to_current)

I\ The Image Bottleneck

Image computation is often the bottleneck in model checking. Optimizations include:
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» Partitioned transition relations: Split 7" into smaller pieces
« Early quantification: Quantify variables as soon as possible

+ Transition clustering: Group related transitions

16.6 Practical Example: Mutual Exclusion

Consider verifying Peterson’s mutual exclusion algorithm with two processes:

// State variables per process: {idle, trying, critical}
// Need at least 2 bits per process = 4 bits total

let trans = build_peterson_transition(&bdd);
let init = build_initial_state(&bdd);

// Bad states: both processes in critical section
let bad = bdd.and(pl_critical, p2_critical);

// Check: can we reach bad states?
let reachable = symbolic_reachability(&bdd, init, trans);
let bad_reachable = bdd.and(reachable, bad);

if bdd.is_zero(bad_reachable) {
println! ("Verified: mutual exclusion holds!");
} else {
println!("Bug found! Extracting counterexample...");
let cex = extract_counterexample(&bdd, init, trans, bad);

16.7 Limitations and Modern Approaches

BDD-based model checking, despite its power, has fundamental limits:
« BDD blowup: Some functions (like multiplication) have exponential BDDs regardless of variable
ordering
+ Memory pressure: Intermediate BDDs during image computation can be 10-100x larger than
the final result
« Ordering sensitivity: The “right” ordering can mean the difference between seconds and days

Modern alternatives have emerged:
+ SAT-based BMC: Bounded model checking unrolls transitions k times and asks “is a bad state
reachable in k steps?”
« IC3/PDR: Property-directed reachability builds proofs incrementally, often without BDDs
entirely
« Hybrid approaches: Use BDDs for control logic, SAT for data paths

i When to Use BDDs

BDDs excel when:
+ The system is highly regular (hardware, protocols)
+ You need to count or enumerate states
» The property involves complex temporal patterns
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« You’ll verify many properties on the same system

Consider SAT/SMT when:
« The instance is too big for BDDs
+ You only need to find one bug (not prove absence)
« The system has irregular, data-dependent structure
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Chapter 17

Combinatorial Problems

BDDs aren’t just for verification — they’re a remarkably powerful tool for combinatorics. Where
SAT solvers find one satisfying assignment, BDDs can count all of them. Where constraint solvers
enumerate solutions one by one, BDDs represent the entire solution space as a single, compact data
structure.

This chapter explores encoding constraints, counting solutions, and solving classic combinatorial
puzzles.

17.1 Constraint Encoding

The pattern is elegant in its simplicity:
1. Encode each constraint as a Boolean function (BDD)
2. Conjoin all constraints: f =c¢; Acy A ... Ay,
3. The resulting BDD represents every feasible solution

Constraint Conjunction

51 Co C3
1M sols 500K sols 2M sols
A A

f=ciNcygNeg

42,000 solutions

Figure 41: Conjoining constraint BDDs yields a BDD representing exactly the feasible solutions.

¢ Key Insight

Once you have the constraint BDD:
+ SAT check: Is the BDD non-zero? (O(1))
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« Count solutions: Traverse the BDD (O(| f|))
+ Enumerate solutions: Walk all paths to 1
« Random sample: Weighted path selection

17.2 The N-Queens Problem

Place n queens on an n x n chessboard so no two attack each other. This classic problem illustrates

BDD-based constraint solving beautifully.

17.2.1 Encoding

For each cell (4, j), variable ; ; indicates whether a queen is present.

'\‘ Example — N-Queens Constraints

For an n X n board:
n o
1. At least one queen per row: \/j:1 T, ; for each row %

2. At most one queen per row: For each row i, pairs (5, k) with j < k:

3. Column constraints: Similar to rows
4. Diagonal constraints: For each diagonal, at most one queen

4-Queens: One Solution

n = 4: 2 solutions
) n = 8: 92 solutions
n = 12: 14,200 solutions

W BDD counts all
solutions in seconds

Figure 42: One of the two solutions to the 4-Queens problem.
17.2.2 Implementation

fn n_queens(bdd: &Bdd, n: usize) — Ref {
let mut vars = vec![vec![Ref::default(); n]l; nl;

// Create variables for each cell
for i in 0..n {
for j in 0..n {
vars[i]l[j] = bdd.variable(/* (i, j) index x/);

¥
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let mut constraint = bdd.one();

// Row constraints
for i in 0..n {
// At least one queen in row i
let at_least_one = vars[i].iter().fold(bdd.zero(), lacc, &v| bdd.or(acc, v));

constraint = bdd.and(constraint, at_least_one);

// At most one queen in row i
for j in 0..n {
for k in (3 + 1)..n {
let not_both = bdd.nand(vars[i][j], vars[i]l[k]);
constraint = bdd.and(constraint, not_both);

I

// Similar for columns and diagonals...
constraint

}

// Count solutions
let queens_bdd = n_queens(&bdd, 8);

let count = bdd.sat_count(queens_bdd, 64); // 64 variables for 8x8
println!("8-Queens has {} solutions", count); // 92

17.3 Graph Coloring

Given a graph G = (V, E), can we color vertices with k colors so adjacent vertices differ?

17.3.1 Encoding

For each vertex v and color ¢, variable x,, . indicates “vertex v has color ¢”.
9’

.. Example — Graph Coloring Constraints

For k-coloring:
1. Each vertex has at least one color: \/Iz=1 Ty e
2. Each vertex has at most one color: ﬁ(%,cl A mv,cg) for ¢; # ¢,
3. Adjacent vertices differ: For each edge (u,v) € E and color c:

~(Ty A, ) (45)
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3-Coloring a Graph

M Red
M Cyan
Yellow

C .

Figure 43: A valid 3-coloring. The BDD encodes all possible valid colorings simultaneously.

17.4 Satisfiability and #SAT

BDDs provide O(1) SAT checking and O(|f]) solution counting:

BDD encodes all
valid colorings

Query BDD Complexity Notes

SAT (is f satisfiable?) O(1) Just check if BDD # 0
#SAT (count solutions) O(|f) Dynamic programming on BDD
All-SAT (enumerate all) O(output) Traverse paths to 1
Random solution O(n) Weighted random walk

17.4.1 Solution Counting Algorithm

4* Algorithm: Solution Counting

SatCount(f, n): // n = number of variables
if f = 0: return 0
if f = 1: return 2n // ALl assignments satisfy

// Memoized recursion
if f in CountCache: return CountCache[f]

v = var(f)
// Account for "skipped" variables above v
skip_factor = 27(v - expected_var)

Tlow_count = SatCount(low(f), n - v - 1)
high_count = SatCount(high(f), n - v - 1)

result = skip_factor * (low_count + high_count)
CountCache[f] = result
return result

)\ Skipped Variables
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If the BDD jumps from variable z; to x5, variables z,, 5, z, are “don’t cares”. Each skipped
variable doubles the solution count (either value works).

17.5 Combinatorial Enumeration

Beyond counting, BDDs support efficient enumeration:

// Enumerate all solutions

fn all_solutions(bdd: &Bdd, f: Ref) — Vec<Vec<bool>> {
let mut solutions = Vec::new();
let mut path = Vec::new();

fn traverse(bdd: &Bdd, node: Ref, path: &mut Vec<bool>, solutions: &mut Vec<Vec<bool>>) {
if bdd.is_zero(node) { return; }
if bdd.is_one(node) {
solutions.push(path.clone());
return;

F

// Try low branch (variable = false)
path.push(false);

traverse(bdd, bdd.low(node), path, solutions);
path.pop();

// Try high branch (variable = true)
path.push(true);
traverse(bdd, bdd.high(node), path, solutions);
path.pop();

Iy

traverse(bdd, f, &mut path, &mut solutions);
solutions

¢ Key Insight

v

Enumeration is efficient when you need all solutions. For huge solution spaces, use random
sampling: at each node, randomly choose low/high weighted by solution counts in each subtree.

17.6 Comparison with SAT Solvers

Aspect BDDs SAT Solvers
Finding one solution  Build BDD, then O(n) Often faster directly
Counting solutions Excellent: O(|f]) Hard: specialized #SAT
Enumerating all Excellent: traverse BDD  Requires blocking clauses
Memory Can explode Usually modest
Incremental solving Add constraints = AND Native support
Certificates BDD is certificate Proof traces
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i Choosing the Right Tool

Use BDDs when:
+ You need to count or enumerate solutions
« The same constraint structure appears repeatedly
+ The problem has exploitable regularity

Use SAT solvers when:
» You only need one solution (or unsatisfiability)
« The instance is very large
« The structure is irregular or data-dependent
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Chapter 18

Symbolic Execution and
Program Analysis

Symbolic execution flips the script on program testing: instead of feeding concrete inputs and watching
what happens, we feed symbols and track all possible behaviors at once. The key challenge? A
program with just 32 if statements has 232 paths.

BDDs cut through this explosion. By representing path conditions — the Boolean constraints deter-
mining which paths are feasible — as BDDs, we can reason about exponentially many paths without
enumerating them.

18.1 Path Conditions as BDDs

In symbolic execution, each program path has a path condition: a Boolean formula over input
symbols that is satisfied exactly when execution takes that path.

Path Conditions in a Program

Entry
if (x > 0)
if (y < 10) \
... Path A 1'>O IS()
else
... Path B
y <10 y>10
Path A Path B
z>0Ay <10 z>0Ay>10

Figure 44: Each path through the program has a corresponding path condition.

¢ Key Insight
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BDDs for path conditions enable:
« Feasibility checking: Is a path reachable? (SAT check)
+ Path merging: Combine paths with same effect (OR)
« Condition refinement: Add constraints along execution (AND)
« Complement paths: What inputs avoid this path? (NOT)

18.2 Control Flow Encoding

We encode program structure as Boolean constraints:

*“\. Example — Boolean Program Encoding

For each program point p; and branch condition c;:
+ Variable at,: “execution is at point ¢”
+ Transition: at;; < at; A ¢; (if branch taken)

The BDD f satisfying at,,,., represents all inputs reaching an error state.

Control Flow as BDD Constraints

BDD Constraints
at_2 © at_1

at_3 e at_2 A (x > 0)

pyix > 0? at_4 © at_2 A -(x > 0)

T / \ F Reachability = SAT(at_target)
[ b3 } [ Py }
Figure 45: Control flow graph encoded as BDD constraints.

18.3 Path Merging

A key advantage of BDD-based analysis: merge paths that reach the same point.
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Path Explosion vs. Path Merging

Enumerate Paths BDD Merge
Path 1 Single BDD
Path 2 SN Represents all

reachable states

- J _J

[
[
{ Path 3
[

Path 4 v

...exponential

Figure 46: BDDs merge exponentially many paths into a single symbolic representation.

I\ When Merging Loses Information

Path merging is sound but may lose precision. If you need to distinguish paths (e.g., for
debugging), track path conditions separately. The trade-off: precision vs. scalability.

18.4 Abstract Interpretation with BDDs

BDDs serve as an abstract domain for path-sensitive analysis:

Definition (BDD Abstract Domain)

A program state is abstracted as:
« Path condition (BDD): Which inputs reach this point
» Value constraints (another domain): What values variables hold

Abstract operations:
« Branch: Conjoin branch condition to path BDD
« Join: Disjoin (OR) path BDDs at merge points
« Widen: For loops, extrapolate to fixed point

Analysis Type Path Sensitivity BDD Role
Flow-insensitive None Not needed
Flow-sensitive Statement order Track reaching definitions
Path-sensitive Branch conditions =~ BDDs track full path conditions
Context-sensitive Call sites BDDs encode calling context
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18.5 Test Case Generation

BDDs enable systematic test generation:

// Generate test inputs from path condition BDD
fn generate_tests(bdd: &Bdd, path_condition: Ref, input_vars: &[Var]) — Vec<TestInput> {
let mut tests = Vec::new();

// Each satisfying assignment is a test case
for assignment in bdd.all_sat(path_condition) {
let test = TestInput {
values: input_vars.iter()
.map(l&v| assignment[v])

.collect(),
53
tests.push(test);
+
tests

}

// Incremental: find input for uncovered path
fn cover_new_path(bdd: &Bdd, uncovered: Ref, covered: Ref) — Option<TestInput> {
// Find path not yet covered
let new_path = bdd.and(uncovered, bdd.not(covered));
if bdd.is_zero(new_path) {
return None; // ALl paths covered!

F

// Get one satisfying assignment
bdd.any_sat(new_path) .map(lal a.into())

¢ Key Insight

For path coverage, generate one test per BDD path. For branch coverage, generate tests that
flip each branch. BDDs make this systematic: enumerate paths, sample representative inputs.

18.6 Concolic Testing

Concolic (concrete + symbolic) execution combines:
« Concrete execution: Run on actual inputs
« Symbolic tracking: Build path condition BDD

4* Algorithm: Concolic Testing Loop

ConcolisTest(program):
worklist = {random_input}
covered = @ (empty BDD)

while worklist not empty:
input = worklist.pop()
(path_cond, _) = execute_symbolically(program, input)

// Mark this path as covered
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covered = covered OR path_cond

// Generate inputs for alternative branches
for branch in path_cond.branches():
// Negate this branch, keep prefix
alt_cond = prefix(branch) AND NOT(branch)
if alt_cond SAT:
new_input = solve(alt_cond)
worklist.add(new_input)

Concolic Testing: Negate and Explore

s N
Original Path Negate first
. J
cgNey Ae
IWAICOPAICS - N
¢y N\ ey
Negate second
. J
s N

¢y Neyg N\ —eg
Negate third

Figure 47: Concolic testing systematically explores alternative paths by negating branch conditions.

18.7 Security Analysis

BDDs excel at security-relevant program analysis:

.. Example — Taint Analysis with BDDs

Track information flow from untrusted sources:
+ Variable tainted,: “variable = holds untrusted data”
+ Propagation: tainted, < tainted, V tainted, (on y = f(x))
+ Violation: tainted, A sink, (tainted data reaches sensitive sink)

The BDD for the violation condition represents all inputs causing a security bug.

i Applications in Security

« SQL injection: Taint user input, check query strings
+ Buffer overflow: Track array bounds symbolically

« Information leak: Path condition reveals secret bits?
« Access control: Encode policy, verify enforcement
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18.8 Practical Considerations

Challenge Mitigation

Chapter 18.7

BDD blowup on complex
conditions

Abstract predicates, simplify Floating-point arithmetic

constraints
Pointer aliasing Points-to analysis pre-pass
Widening, bounded unrolling Scalability

BDD-based symbolic execution shines when:
« Path conditions are Boolean or small integer comparisons
« You need complete coverage analysis (all paths)
« The same analysis runs on multiple inputs/programs

126

Interval abstraction, not BDDs

Loops

Modular analysis, summaries



BINARY DEcisiON DIAGRAMS Chapter 18.8

Chapter 19

Configuration and Feature
Models

Modern software rarely ships as a single product. A car configurator might offer 50 optional features,
from heated seats to autonomous parking. With 2°° combinations — more than a quadrillion — how
do you ensure every valid configuration actually builds, boots, and behaves correctly?

BDDs are the hidden engine behind software product line analysis, compactly representing astro-
nomical configuration spaces and enabling instant queries about variability.

19.1 Software Product Lines

A software product line (SPL) is a family of related products sharing a common architecture but
varying in features.

Product Line Variability

Core Platform

Shared code & architecture

/

Feature A Feature B Feature C

Optional Required Optional

Product 1: A+B Product 2: B+C Product 3: A+B+C

Figure 48: A product line derives multiple products from shared assets plus optional features.

¢ Key Insight
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With n optional features, there are potentially 2" configurations. Not all are valid —
dependencies and conflicts constrain the space. BDDs compactly represent exactly the valid
configurations.

19.2 Feature Models

A feature model captures variability as a tree with constraints:

*\. Example — Feature Model Elements

Mandatory: Child must be selected if parent is (A — B)
Optional: Child may be selected if parent is (A — (B V —B))
Alternative (XOR): Exactly one child (A — (B & C))
Or-group: At least one child (A — (B V C))

Cross-tree constraints: B — (' (selecting B requires C)

> 8=

Feature Model: Mobile Phone

[ ] o o \ /

© Mandatory Basic Color
© Optional

= XOR group GPS — Color

Figure 49: Feature model for a mobile phone with mandatory, optional, and alternative features.
19.2.1 BDD Encoding

fn encode_feature_model(bdd: &Bdd) — Ref {
// Feature variables
let phone = bdd.variable(1);
let calls = bdd.variable(2);
let gps = bdd.variable(3);
let media = bdd.variable(4);
let screen = bdd.variable(5);
let basic = bdd.variable(6);
let color = bdd.variable(7);

// Mandatory: Phone > Calls
let ¢l = bdd.implies(phone, calls);

// Mandatory: Phone > Screen
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let ¢2 = bdd.implies(phone, screen);

// XOR: Screen > (Basic & Color)
let xor_screen = bdd.xor(basic, color);
let ¢3 = bdd.implies(screen, xor_screen);

// Cross-tree: GPS > Color
let c4 = bdd.implies(gps, color);

// Root must be selected
let ¢5 = phone;

// Conjoin all constraints
bdd.and_many(&[cl, c2, ¢3, c4, c5])

19.3 Configuration Analysis Queries

BDDs answer configuration questions efficiently:

Query BDD Operation Complexity
Is config valid? Evaluate BDD path O(n)
Any valid config? BDD # 0? 0(1)
Count valid configs SatCount O(|f])
List all configs AllSat enumeration O(output)
Feature always selected? fA—z=0? o(|f])
Features compatible? fAzAy+0? O(|f])

.. Example — Common Analysis Queries

// Is this configuration valid?
let config = phone & calls & gps & color & !basic;
let valid = !bdd.is_zero(bdd.and(feature_model, config));

// How many valid configurations?
let count = bdd.sat_count(feature_model, num_features);

// Is GPS always selected in valid configs?
let without_gps = bdd.and(feature_model, bdd.not(gps));
let gps_mandatory = bdd.is_zero(without_gps);

// Are GPS and Media compatible?

let both = bdd.and(feature_model, bdd.and(gps, media));
let compatible = !bdd.is_zero(both);

19.4 Interactive Configuration

When users configure products interactively, BDDs enable smart assistance:
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Interactive Configuration Flow

System responds

User selects BDD Update

v Color now required

Feature GPS f+ fAGPS o
X Basic disabled

o Media still optional

\_//

Continue selecting...

Figure 50: Interactive configuration with BDD-backed constraint propagation.

4* Algorithm: Propagate Selection

PropagateSelection(bdd, current_config, selected_feature):
// Add selection to configuration
new_config = current_config AND selected_feature

// Check validity
if new_config = 0:
return Error("Selection violates constraints")
// Find implied selections (dead features = features that must be false)
for each unselected feature f:
if (new_config AND f) = 0:
f.status = DISABLED // Can't be selected
else if (new_config AND NOT f) = 0:
f.status = REQUIRED // Must be selected
else:
f.status = OPTIONAL // User can choose

return new_config

¢ Key Insight

For large feature models (thousands of features), caching partial BDDs and using incremental

operations keeps interactive response times under 100ms.

19.5 Optimization over Configurations

Often we want not just any valid configuration, but the best one.

.. Example — Configuration Optimization

Each feature has attributes:
+ Cost: cost(GPS) = 50, cost(Color) = 30
+ Performance: perf(Color) = 0.8

Goals:
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« Minimize cost while meeting requirements
« Find Pareto-optimal configurations (cost vs. features)

Configuration Search Space

Cost
Pareto front

Invalid

Features

Figure 51: Pareto-optimal configurations balance cost against features.

19.6 Industrial Applications

19.6.1 Linux Kernel Configuration

The Linux kernel has over 15,000 configuration options with complex dependencies.

i Linux Kernel Kconfig

« Options: 15,000+ Boolean and choice features

+ Constraints: Thousands of dependencies and conflicts

« BDD use: Configuration tools like make menuconfig use constraint solvers
« Challenge: Full BDD can be huge; partitioned/approximate methods used

19.6.2 Automotive Configuration

Modern cars have thousands of electronic control units (ECUs) with variant configurations:

Domain Features BDD Benefit

Automotive ECUs Engine, safety, comfort options ~ Validate combinations pre-produc-
tion

Cloud services VM sizes, regions, features Pricing, compatibility checks

Product configurators E-commerce customization Real-time validity feedback

Build systems Compiler flags, dependencies Detect incompatible flag combina-
tions
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I\ Scalability Limits

Very large feature models (10,000+ features) can cause BDD blowup. Industrial tools use:
« Partitioning: Split model into independent sub-models
« Approximation: Over-approximate the valid space
« Hybrid: BDD + SAT solver combination

19.7 The Power of Feature Model BDDs

Once you have a BDD for a feature model:

¢ Key Insight

<

+ Validation: Instantly check any configuration

« Counting: Know exactly how many products are possible

« Sampling: Generate random valid configurations for testing
» Analysis: Find dead features, redundant constraints

+ Optimization: Search only valid configurations

The BDD is a complete, compact encoding of your product space.
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Chapter 20

Library Comparison

Chapter 19.7

The BDD library ecosystem spans three decades of research and engineering. From CUDD’s 1996
release — still the gold standard — to modern parallel implementations, each library embodies different

design philosophies.

Understanding this landscape helps you choose the right tool for your problem and appreciate where

bdd-rs fits in the lineage.

20.1 Landscape of BDD Libraries

BDD Library Evolution

CUDD

C - 1996

1990s

Figure 52: Major BDD libraries across three decades of development.

BuDDy

C++ - 1999

JavaBDD

Java - 2003

2000s

bdd-rs

Rust - 2024

2020s

Time

20.2 CUDD (Colorado University Decision

Diagram)

CUDD is the reference implementation — the library against which all others are measured.
Developed at the University of Colorado, Boulder, it has powered countless research projects and

industrial tools.
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i CUDD at a Glance

+ Language: C (with C++ wrapper)

 Features: BDDs, ZDDs, ADDs (Algebraic Decision Diagrams)

« Reordering: Sifting, window permutation, simulated annealing
« Memory: Reference counting with periodic garbage collection
« Status: Mature, stable, widely used

20.2.1 Strengths

1. Comprehensive: Supports BDDs, ZDDs, and ADDs in one library
2. Battle-tested: Decades of use in research and industry

3. Excellent reordering: Dynamic variable reordering is well-tuned
4. Rich API: Every conceivable operation is available

20.2.2 Limitations

1. C-style API: Manual memory management, no type safety
2. Single-threaded: No built-in parallelism

3. Complex setup: Configuration can be tricky

4. Documentation: Comprehensive but dense

// CUDD usage example
DdManager *manager = Cudd_Init(®, O, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0);

DdNode *x = Cudd_bddIthVar(manager, 0);
DdNode *y = Cudd_bddIthVar(manager, 1);
DdNode *f = Cudd_bddAnd(manager, x, y);
Cudd_Ref(f); // Must manually reference!

20.3 BuDDy

BuDDy is the workhorse of many academic tools — simpler than CUDD but still powerful.

.. Example — BuDDy Philosophy

BuDDy prioritizes simplicity and ease of use. The API is cleaner than CUDD’s, with better C+
+ integration. It’s the library of choice when you want something that “just works”

// BuDDy usage example
bdd_init(1000000, 100000); // nodes, cache
bdd_setvarnum(10);

bdd x = bdd_ithvar(0);
bdd y = bdd_ithvar(1);
bdd f = x & y; // Operator overloading!

// Automatic reference counting
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20.4 Sylvan

Sylvan brings parallelism to BDD operations, exploiting multi-core processors.

Sylvan: Parallel BDD Operations

Single-threaded Sylvan (parallel)

Thread 1
T1 T2 T3 T4

Up to 4x speedup on 4 cores

Figure 53: Sylvan distributes BDD operations across multiple threads.
¢ Key Insight

Sylvan uses work-stealing parallelism: threads that finish early steal work from busy threads.
The unique table and operation cache use lock-free data structures for thread safety.

I\ When Parallelism Helps

Parallel BDD operations help most when:
+ BDDs are large (millions of nodes)
« Operations are compute-bound (complex Apply)
« Multiple cores are available

For small BDDs, single-threaded libraries may actually be faster due to lower overhead.

20.5 Comprehensive Comparison

Feature CUDD BuDDy Sylvan bdd-rs
Language C C++ C Rust
Reordering v v v ©
Complement Edges v v v v
Parallel X X v X
ZDD Support v X v X
ADD Support v X X X
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Memory Safety X X X v

Reference Counting ~ Manual Auto Lock-free =~ Mark-sweep

20.6 bdd-rs: Rust-Native Design

bdd-rs takes a different approach: memory safety first, enabled by Rust’s ownership model.

“\. Example — bdd-rs Philosophy

+ Safe by default: No undefined behavior, no memory leaks
« Ergonomic API: Rust idioms, not C idioms

+ Modern design: Complement edges, level-based ordering
+ Transparent: Simple implementation you can understand

// bdd-rs usage

let bdd = Bdd::new();

let x = bdd.variable(1);

let y = bdd.variable(2);

let f = bdd.and(x, y); // No manual reference counting!
// Drop automatically cleans up

20.6.1 What bdd-rs Does Well

1. Memory safety: Rust’s type system prevents common bugs

2. Clean API: Ref handles are lightweight and copyable

3. Explicit management: Control when garbage collection happens
4. Readable source: Learn BDD internals by reading the code

20.6.2 Current Limitations

1. No dynamic reordering (yet): Manual ordering only
2. Single-threaded: No parallelism

3. Fewer features: No ZDDs, no ADDs

4. Younger project: Less battle-tested than CUDD
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20.7 Choosing a Library

Decision Guide: Which Library?

Need ZDDs/ADDs?
Yes No
CUDD Need parallelism?
Full-featured
Yes No
Sylvan
Need safety?
Multi-core
bdd-rs BuDDy

Figure 54: Choosing a BDD library based on your requirements.

i Recommendation Summary

+ Research prototyping: bdd-rs (safe, readable) or BuDDy (simple)
« Production systems: CUDD (proven) or Sylvan (if parallel)

« Learning BDDs: bdd-rs (clean implementation to study)

« Java projects: JavaBDD (JNI wrapper around CUDD)
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Chapter 21

Design Trade-offs

Building a BDD library is an exercise in trade-offs. Every decision — how to store nodes, when
to garbage collect, whether to cache — trades off between competing concerns: speed vs. memory,
simplicity vs. features, safety vs. flexibility.

This chapter dissects the key engineering choices, explaining why reasonable libraries make radically
different decisions.

21.1 Memory vs. Time

The fundamental trade-off: cache more to avoid recomputation, or compute more to save memory.

Memory-Time Trade-off

Time

More cache —
Fewer recomputations
Smal cache But: Memory pressure

Diminishing returns

—O-

Sweet spot

Memory

Figure 55: Increasing cache size improves performance up to a point, then provides diminishing returns.

¢ Key Insight

The “sweet spot” depends on:
» Working set: How many operations are repeated?
 Available memory: How much can you afford?
+ Access patterns: Temporal locality matters

Most libraries default to generous caching — memory is cheaper than time.
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21.2 Node Representation Choices

How do you store BDD nodes in memory? This low-level decision affects every operation.

Approach Pros Cons
Pointer-based Direct access, familiar 64-bit overhead, GC complexity
Index-based Compact (32-bit) Extra indirection
Array-of-structs ~ Cache-friendly traversal Fragmentation on deletion
Struct-of-arrays SIMD potential Scattered access patterns

Node Layout Strategies

Array of Structs Struct of Arrays
[ vars: 1,2, 3, ... ]
var var var
lo lo lo [ lows: 4,0, 2, ... ]
hi hi hi
[ highs: 5, 3, 6, ... ]

bdd-rs: Array of Structs

Simple, cache-friendly, index-based

Figure 56: Different memory layouts trade locality for flexibility.

21.3 Complement Edge Trade-offs

Complement edges provide significant benefits but add complexity:

Aspect Without Complements With Complements
Node count Baseline Up to 50% fewer
Negation O(n) copy O(1) flip bit
Canonicity Simple Normalization rules required
Algorithm complexity Straightforward Extra edge-case handling
Memory per node Baseline Same or less total

.. Example — The Complement Edge Payoff

For symmetric functions like XOR, complement edges can reduce node count dramatically. The
XOR of 10 variables:

+ Without complements: 2000 nodes

+ With complements: 10 nodes
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The normalization complexity is worth it for the space savings.

21.4 Unique Table Design

The unique table is the heart of any BDD library — every node lookup goes through it.

Unique Table Approaches

s N\ e N
Global Table Per-Level Tables
All nodes mixed L1 L2 L3
One hash table
\ y, L y,
1. Simple 1. Reorddring friendly
- Hot during GC 2. Levdl-local GC

bdd-rs choice

Figure 57: Per-level tables enable efficient variable reordering.

¢ Key Insight

Per-level (subtable) design enables:
+ Local operations: Only touch affected levels during reordering
+ Incremental GC: Collect one level at a time
« Better locality: Nodes at same level accessed together

21.5 Cache Strategies

Operation caches trade memory for avoiding recomputation:

4* Algorithm: Cache Design Decisions

Key decisions:
1. Single cache vs. per-operation caches
- Single: simpler, possible conflicts
- Multiple: more memory, fewer conflicts

2. Cache associativity
- Direct-mapped: simple, high conflict rate
- Set-associative: balance
- Fully-associative: complex, lowest conflicts

3. Eviction policy
- Random: simple, works well in practice
- LRU: optimal but expensive
- FIFO: simple, reasonable
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4. Persistence across GC
- Clear cache: safe but lose warmth
- Update cache: complex, preserves work

21.6 Garbage Collection Approaches

BDD libraries must reclaim memory from dead nodes:

Approach Pros Cons

Manual (user calls) Predictable, explicit control Burden on user

Reference counting Immediate reclamation Cycle issues, overhead per op

Mark-and-sweep No per-op overhead Pause time, needs root tracking

Incremental/concurrent Low latency Complex implementation

GC Strategy Comparison

s a s N r )\
Ref Counting Mark-Sweep Lock-free
CUDD, BuDDy bdd-rs Sylvan
Increment/decrement No per-op overhead Parallel-
on every operation Periodic pause safe
¢ J ¢ J

N—

Figure 58: Different GC strategies suit different use cases.

21.7 API Design Philosophy

The public API shapes how users interact with your library:

Philosophy Example Trade-off

Maximize safety Rust’s Ref type May limit advanced use

Maximize flexibility = CUDD’s raw pointers User can shoot themselves

Hide internals Opaque handles Limits optimization opportunities

Expose internals Public node structure Hard to change later

.. Example — bdd-rs API Philosophy

// Safe: Ref is Copy, no manual memory management
let f = bdd.and(x, y); // Returns Ref, not raw pointer
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// Explicit: GC is manual, user controls timing
bdd.gc(); // User decides when

// Transparent: Can inspect internals if needed
let node = bdd.get_node(f); // Access node data

The goal: safe by default, powerful when needed.

21.8 The Unifying Theme

Every design decision involves trade-offs. The “right” choice depends on your priorities:

i Design Priority Matrix

« Performance-critical applications: Optimize for speed, accept complexity
» Research prototypes: Optimize for simplicity, accept slower speed

« Production systems: Optimize for reliability, accept some inefficiency

+ Learning/teaching: Optimize for clarity, accept naive implementations

bdd-rs prioritizes safety and clarity, making it ideal for learning and correct-by-construction

implementations.
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Chapter 22

Future Directions

BDDs have been around for four decades, yet the field is far from stagnant. Researchers continue to
push boundaries: scaling to larger problems, exploiting modern hardware, and finding unexpected
applications in machine learning and quantum computing.

This chapter surveys the frontier — where BDD research is headed and what new capabilities may
emerge.

22.1 Parallelism and Distribution

Modern CPUs have dozens of cores; servers have hundreds. Can BDDs exploit this parallelism, or are
they inherently sequential?

Parallel BDD Challenges

( ) ( )

Shared State Challenge Approaches

Unique Table « Lock-free hash tables (Sylvan)

All threads access « Work-stealing schedulers

« Distributed memory (MPI)

T1 T2 T3

Figure 59: Parallel BDD operations must coordinate access to shared data structures.

i Parallelism Research Frontiers

+ GPU acceleration: BDD traversal is irregular, challenging for GPUs
- FPGA implementation: Custom hardware for Apply operations

« Distributed BDDs: Partitioning across cluster nodes

+ Speculative execution: Compute both branches, discard unused

22.2 Integration with Machine Learning

BDDs meet neural networks in surprising ways:
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.. Example — BDDs for Explainable Al

A neural network classifies images, but why did it decide “cat™?

Approach: Compile the (simplified) decision boundary into a BDD. The BDD reveals:
« Which input features matter
+ What combinations trigger each output
+ Minimal explanations for decisions

Neural Network — BDD Extraction

Neural Net BDD Explanation

—

extract

L O

Figure 60: BDDs can explain neural network decisions by extracting symbolic decision rules.

22.3 Modern Hardware Considerations
Today’s CPUs are complex — cache hierarchies, NUMA, branch prediction. BDD libraries must adapt:

Hardware Feature BDD Impact Optimization

L1/L2/L3 caches Node access patterns ~ Cache-oblivious algorithms

NUMA (multi-socket) Memory locality Per-socket unique tables

Branch prediction If-then-else traversal Branchless operations

Prefetching BDD traversal Explicit prefetch hints

Persistent memory Large BDDs Memory-mapped structures
¢ Key Insight

A cache-aware BDD library can be 2-10x faster than a naive implementation on the same
algorithm, purely from better memory access patterns.

22.4 BDDs in Quantum Computing

Quantum computing introduces new uses for decision diagrams:
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Decision Diagrams for Quantum

e Y e

Classical BDD

Terminals: 0, 1

Edges: Boolean

epresents: f: {0,1}" — {0,1

Applications:

\ Circuit synthesis y L

Quantum DD

Terminals: complex

Edges: amplitudes

Represents: |40 € C2"

Applications:

Quantum simulation

Figure 61: Quantum decision diagrams extend BDDs to represent quantum states.

.. Example — Quantum Circuit Synthesis

Given a quantum operation as a unitary matrix, find a circuit implementing it.

BDD-based approaches:
1. Encode the transformation symbolically

2. Search for gate sequences using BDD operations

3. Verify equivalence with quantum decision diagrams

This connects classical BDD techniques to quantum compilation.

22.5 Incremental and Online Algorithms

What if the BDD changes continuously?

4* Algorithm: Incremental BDD Update

Traditional:

constraints = [c1, ¢2, ¢3, ..., cn]

bdd = AND(cl, c¢2, ..., cn) // Build from scratch
Incremental:

bdd = cl

bdd = AND(bdd, c2) // Add constraint

bdd = AND(bdd, c3)

// Later: remove c2
// Challenge: Can we "subtract" c2 efficiently?

I\ The Subtraction Problem

Chapter 22.4

BDD conjunction is irreversible — you can’t efficiently “remove” a constraint. Workarounds:

+ Keep constraint BDDs separate, reconstruct on removal

« Use “soft” constraints with indicator variables

« Maintain incremental history for rollback
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22.6 Domain-Specific Extensions

BDDs have spawned many specialized variants:

Variant Extension Application

ZBDD Zero-suppressed rules Combinatorics, SAT

ADD Arbitrary terminal values Probabilistic inference

EVBDD Edge-valued Arithmetic, probability

MTBDD Multi-terminal Multi-valued logic

SDD Sentential DD Knowledge compilation
¢ Key Insight

The BDD concept generalizes to Decision Diagrams — any data structure that:
1. Uses a fixed variable ordering
2. Applies reduction rules for canonicity
3. Enables efficient operations via dynamic programming

22.7 The Enduring Role of BDDs

After 40 years, why do BDDs persist?

Why BDDs Endure
( R
Unique Properties Modern Integration
v Canonicity « SAT solver preprocessing

v Polynomial equality check « SMT theory solving

v Efficient operations « Hardware synthesis

v Compact for structure « ML interpretability
. J

Figure 62: BDDs offer unique properties that complement modern techniques.

i The Future: Integration, Not Replacement

BDDs won'’t replace SAT solvers or neural networks. But they fill a unique niche:

» SAT finds one solution — BDDs represent all solutions
+ Neural nets approximate — BDDs are exact
« SMT reasons about theories — BDDs provide Boolean backbone

The future is hybrid systems combining the strengths of each approach.
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¢ Key Insight

v

For the practitioner: BDDs are a power tool. Like a good compiler or database, they solve a
class of problems so well that reinventing them is rarely worthwhile.

For the researcher: BDDs are a living field. Parallelism, quantum, ML integration — there’s still
much to discover.

For the student: BDDs teach fundamentals. Canonical forms, dynamic programming, memory
management — skills that transfer everywhere.
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Chapter A

API Reference

Quick reference for the bdd-rs APL For complete documentation, see the rustdoc.

A.1 Manager Creation

// Create with default settings
let bdd = Bdd::default();

// Create with specific capacity (2”bits nodes)
let bdd = Bdd::new(20); // Up to ~1M nodes

A.2 Variable Creation

// Create a variable (1-indexed)
let x = bdd.variable(1);
let y = bdd.variable(2);

// Variables are cached — calling again returns same Ref
assert_eq! (bdd.variable(1), x);

\\ Variable Indexing

Variables are 1-indexed. Variable 0 is reserved for internal use. Use Var(1), Var(2), etc.

A.3 Boolean Operations

Operation Method Notes

NOT bdd.not(x) or -x O(1) with complement edges
AND bdd.and(x, y)

OR bdd.or(x, y)

XOR bdd.xor(x, y)

NAND bdd.nand(x, y)
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NOR bdd.nor(x, y)

Implies bdd.implies(x, y) T =y

IFF bdd.equiv(x, y) Ty
ITE bdd.ite(c, t, e) If c then t else e

// Examples

let £ = bdd.and(x, y); /] x Ay
let g = bdd.or(x, bdd.not(y)); /] x v -y
let h = bdd.ite(c, f, g); // if c then f else g

A.4 Queries

// Terminal checks

bdd.is_zero(f) // Is £ = 0?
bdd.is_one(f) // Is f 1?
bdd.is_const(f) // Is f terminal?

// Satisfiability
bdd.is_sat(f) /l £ %0
bdd.is_tautology(f) // f = 1

// Size metrics

bdd.size(f) // Nodes in subgraph
bdd.sat_count(f, num_vars) // Satisfying assignments
bdd.node_count() // Total nodes in manager

A.5 Cofactors and Restriction

// Low/high cofactors
let f_low = bdd.low(f); // f|_{top_var=0}
let f_high = bdd.high(f); // fl|_{top_var=1}

// Restriction to specific variable

let f_x0 = bdd.restrict(f, Var(l), false); // fl_{x.=0}
let f_x1 = bdd.restrict(f, Var(1), true); /] fl_{x.=1}

A.6 Quantification

// Existential: 3Ix. f = f|_{x=0} v f|_{x=1}
let exists_x = bdd.exists(f, Var(1));

// Universal: V¥x. f = f|_{x=0} A f|_{x=1}
let forall_x = bdd.forall(f, Var(1));

// Over multiple variables

let cube = bdd.cube(&[Var(1), var(2)1);
let exists_xy = bdd.exists_cube(f, cube);
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A.7 Composition

// Substitute g for variable x in f
let result = bdd.compose(f, Var(1), 9); // flxi := gl

A.8 Visualization

// Generate DOT format
let dot = bdd.to_dot(f);

// With custom options

let dot = bdd.to_dot_opts(f, DotOpts {
show_complement: true,
..Default::default()

58
// Write to file, then render

std::fs::write("bdd.dot", dot)?;
// $ dot -Tpng bdd.dot -o bdd.png

A.9 Garbage Collection

// Mark roots and collect
bdd.gc(&[f, g, h]);

// Statistics

let stats = bdd.stats();
println!("Nodes: {}, Peak: {}", stats.nodes, stats.peak_nodes);

i GC Best Practices

+ Call gc() periodically during long computations
+ Always pass all BDDs you need to keep as roots
« Unreachable nodes are freed, invalid Ref s will panic
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Chapter B

Complexity Analysis

Chapter A.9

Time and space complexity of BDD operations. These are worst-case bounds; actual performance is

often much better due to sharing and caching.

B.1 Operation Complexity

Operation Time Space Notes

Negation O(1) O(1) Complement edge flip
AND, OR, XOR O(l1] - 1g1) O(If|-1g])  Apply algorithm

ITE O(f[-1gl-|n) — O(f]-Igl-|nl)  Three operands
Restrict o(lf]) o(|f]) Single variable
Compose O(IfF? - lg1) O(ff-1gh)  flz=4g]

Jz. f Oo(|f1?) O(|f1?) Single variable

V. f Oo(|f1?) O(1f?) Same as 3

Relational Product  O(|f| - |g]-2¥)  O(|f|-|g|-2*) k= vars quantified
Equivalence Check 0O(1) 0O(1) Pointer comparison
SAT Check o(1) o(1) Is BDD # 0?

SAT Count o(|f]) o(|f]) Dynamic programming
SAT Witness O(n) O(n) n = variables

Level Swap O(w?) O(1) w = level width

Table 1: Complexity of BDD operations. | f| denotes the number of nodes in BDD f.

B.2 Function Size Bounds

Some functions have inherently small or large BDDs:
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Function Class BDD Size  Example

Constants O(1) 0,1

Single variable O(1) x;

AND/OR of n vars O(n) Ty ATy Ao ATy,
XOR of n vars O(n) T, Dz,D...0x,
Symmetric O(n?) Majority, threshold
Comparator O(n) x < y (interleaved)
Addition O(n) x + y (interleaved)
Multiplication Q(?”/ 3) T Xy

Hidden weighted bit Q (2”/ 2) Specific construction

Table 2: BDD sizes for various function classes (with optimal variable ordering).

I\ Ordering Dependence

These bounds assume optimal variable ordering. With a bad ordering, even simple functions
like addition can become exponential. For example, x < y with all z-bits before all y-bits is

exponential.

B.3 Caching Effects

Without caching, Apply is exponential. With caching:

Definition (Memoization Guarantee)

Each unique subproblem (f,g,0p) is computed at most once. Total work is bounded by the
number of distinct subproblems, which is O(| f] - |g|).

¢ Key Insight

The cache is what makes BDDs practical. A “small” cache (e.g., 10% of unique table size) is usually
sufficient — most operations have high temporal locality.

B.4 Memory Analysis

Per-node memory in bdd-rs:
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Component Size
Variable index 16 bits
Low child (index + complement) 32 bits
High child (index only) 31 bits
Hash chain pointer 32 bits
Total per node 14 bytes (aligned to 16)

Table 3: Memory layout of a BDD node in bdd-rs .

For a BDD with N nodes:
+ Unique table: N x 16 bytes (nodes) +O(N) (hash buckets)
» Operation cache: Typically 0.1N to 0.5N entries x 16 bytes/entry
« Total: Roughly 20N to 30N bytes
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Chapter C

Bibliography and Further
Reading

Key references for deeper study, organized by topic.
C.1 Foundational Papers

i Essential Reading

If you read nothing else, read Bryant (1986). It’s the paper that established BDDs as we know
them today.

1. R. E. Bryant (1986). “Graph-Based Algorithms for Boolean Function Manipulation.” IEEE Trans-
actions on Computers, C-35(8):677-691.

The seminal paper introducing ROBDDs with the canonicity theorem.
2. C. Y. Lee (1959). “Representation of Switching Circuits by Binary-Decision Programs.” Bell
System Technical Journal, 38:985-999.

Early work on binary decision programs, predating modern BDDs.
3. S. B. Akers (1978). “Binary Decision Diagrams.” IEEE Transactions on Computers, C-27(6):509-
516.

Formalization of binary decision diagrams.

C.2 Algorithms and Optimizations

1. K. S. Brace, R. L. Rudell, R. E. Bryant (1990). “Efficient Implementation of a BDD Package.”
DAC “90.

Practical implementation techniques including complement edges and caching.
2. R. Rudell (1993). “Dynamic Variable Ordering for Ordered Binary Decision Diagrams.” [CCAD
93.

The sifting algorithm for dynamic reordering.
3. S. Minato (1993). “Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems.”
DAC “93.

155



BiNARY DEcisioN DIAGRAMS Chapter C.2

Introduction of ZDDs for sparse set families.
4. R. 1. Bahar et al. (1993). “Algebraic Decision Diagrams and Their Applications.” ICCAD ‘93.

ADD:s for non-Boolean terminal values.

C.3 Model Checking

1. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang (1992). “Symbolic Model
Checking: 10%° States and Beyond.” Information and Computation, 98(2):142-170.

Landmark paper on symbolic model checking with BDDs.
2. K. L. McMillan (1993). Symbolic Model Checking. Kluwer Academic Publishers.

Comprehensive book on symbolic verification.
3. E. M. Clarke, O. Grumberg, D. Peled (1999). Model Checking. MIT Press.

Standard reference on model checking, including BDD methods.

C.4 Books and Surveys

1. C. Meinel, T. Theobald (1998). Algorithms and Data Structures in VLSI Design: OBDD — Foun-
dations and Applications. Springer.

Thorough treatment of BDD theory and applications.

2. D. E. Knuth (2009). The Art of Computer Programming, Volume 4A: Combinatorial Algorithms,
Part 1. Addison-Wesley.

Extensive coverage of BDDs and ZDDs with careful analysis.

3. H. R. Andersen (1999). “An Introduction to Binary Decision Diagrams.” Lecture Notes, IT
University of Copenhagen.

Excellent pedagogical introduction, freely available online.

C.5 Software Libraries

Library Language URL

CUDD C vlsi.colorado.edu/~fabio/CUDD
BuDDy C++ github.com/jgcoded/BuDDy
Sylvan C github.com/trolando/sylvan
JavaBDD Java javabdd.sourceforge.net
bdd-rs Rust (this library)

C.6 Online Resources

« Bryant’s website: Original papers and slides from the BDD inventor
+ CUDD documentation: Detailed manual for the reference implementation
« Knuth’s web pages: Errata, additional examples, implementations
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