5 Graph Theory Cheatsheet [Glossary](https://en.wikipedia.org/wiki/Glossary_of_graph_theory)

- ∗ Graph[⊠] is an ordered pair $G = \langle V, E \rangle$, where $V = \{v_1, \ldots, v_n\}$ is a set of vertices, and $E = \{e_1, \ldots, e_m\}$ is a set of edges. \circ Given a graph G, the notation $V(G)$ denotes the vertices of G.
	- \circ Given a graph G, the notation $E(G)$ denotes the edges of G.
	- In fact, $V(\cdot)$ and $E(\cdot)$ functions allow to access "vertices" and "edges" of any object possessing them (e.g., paths).
- Order of a graph G is the number of vertices in it: $|V(G)|$.
- ∗ Size of a graph G is the number of edges in it: $|E(G)|$.
- ∗ Simple **undirected^{iz}** graphs have $E \subseteq V^{(2)}$ $E \subseteq V^{(2)}$ $E \subseteq V^{(2)}$, *i.e.* each edge $e_i \in E$ between vertices *u* and *v* is denoted by $\{u, v\} \in V^{(2)}$. Such undirected edges are also called links or lines.

 $\circ A^{(k)} = \{ \{x_1, \ldots, x_k\} \mid x_1 \neq \cdots \neq x_k \in A \} = \{ S \mid S \subseteq A, |S| = k \}$ is the set of k-sized subsets of A.

∗ Simple **directed[⊠]** graphs have $E \subseteq V^2$ $E \subseteq V^2$, *i.e.* each edge $e_i \in E$ from vertex u to v is denoted by an ordered pair $\langle u, v \rangle \in V^2$. Such directed edges are also called arcs or arrows.

 $\circ A^k = A \times \cdots \times A = \{(x_1, \ldots, x_k) \mid x_1, \ldots, x_k \in A\}$ is the set of k-tuples (Cartesian k-power of A).

- ∗ Multi-edges^{t'} are edges that have the same end nodes.
- ∗ Loop^ø is an edge that connects a vertex to itself.
- ∗ Simple graph^{1[2](https://en.wikipedia.org/wiki/Graph_theory#Graph)} is a graph without multi-edges and loops.
- $*$ Multigraph $^{\mathbf{z}}$ is a graph with multi-edges.
- ∗ Pseudograph[&] is a multigraph with loops.
- ∗ Null graph^{1[2](https://en.wikipedia.org/wiki/Null_graph)} is a "graph" without vertices.
- ∗ Trivial (singleton) graph is a graph consisting of a single vertex.
- ∗ Empty (edgeless) graph[⊠] is a graph without edges.
- ∗ Complete graph[¤] K_n is a simple graph in which every pair of distinct vertices is connected by an edge.
- ∗ Weighted graph[∟] $G = (V, E, w)$ is a graph in which each edge has an associated numerical value (the weight) represented by the **weight function** $w : E \to Num$.
- ∗ Subgraph^{E'} of a graph $G = \langle V, E \rangle$ is another graph $G' = \langle V', E' \rangle$ such that $V' \subseteq V, E' \subseteq E$. Designated as $G' \subseteq G$.
- ∗ Spanning (partial) subgraph[&] is a subgraph that includes all vertices of a graph.
- ∗ Induces subgraph[⊠] of a graph $G = \langle V, E \rangle$ is another graph G' formed from a subset S of the vertices of the graph and all the edges (from the original graph) connecting pairs of vertices in that subset. Formally, $G' = G[S] = \langle V', E' \rangle$, where $S \subseteq V$, $V' = V \cap S$, $E' = \{e \in E \mid \exists v \in S : e \mid v\}.$
- ∗ Adjacency[⊠] is the relation between two vertices connected with an edge.
- ∗ Adjacency matrix $^{\bf g}$ is a square matrix $A_{V\times V}$ of an adjacency relation.
- \circ For simple graphs, adjacency matrix is binary, *i.e.* $A_{ij} \in \{0, 1\}$.
	- For directed graphs, A_{ij} ∈ {0, 1, -1}.
	- \circ For multigraphs, adjacency matrix contains edge multiplicities, i.e. $A_{ij} \in \mathbb{N}_0$.
- ∗ Incidence[⊠] is a relation between an edge and its endpoints.
- ∗ Incidence matrix^{1[2](https://en.wikipedia.org/wiki/Incidence_matrix)} is a Boolean matrix $B_{V\times E}$ of an incidence relation.
- ∗ Degree^r deg(v) the number of edges incident to v (loops are counted twice).
	- $\delta(G) = \min_{v \in V} \deg(v)$ is the **minimum degree**.
	- $\circ \Delta(G) = \max_{v \in V} \deg(v)$ is the **maximum degree**.
	- \circ Handshaking lemma. \sum $\overline{v \in V}$ $deg(v) = 2|E|.$
- ∗ A graph is called *r*-regular[⊠] if all its vertices have the same degree: $\forall v \in V : deg(v) = r$.
- $*$ Complement graph $^{\bf E}$ of a graph G is a graph H on the same vertices such that two distinct vertices of H are adjacent iff they are non-adjacent in G .
- ∗ **Intersection graph^{1[2](https://en.wikipedia.org/wiki/Intersection_graph)}** of a family of sets $F = \{S_i\}$ is a graph $G = \Omega(F) = \langle V, E \rangle$ such that each vertex $v_i \in V$ denotes the set S_i , i.e. $V = F$, and the two vertices v_i and v_j are adjacent whenever the corresponding sets S_i and S_j have a non-empty intersection, *i.e.* $E = \{ \langle v_i, v_j \rangle \mid i \neq j, S_i \cap S_j \neq \emptyset \}.$
- ∗ Line graph[∟] of a graph *G* = $\langle V, E \rangle$ is another graph *L*(*G*) = Ω(*E*) that represents the adjacencies between edges of *G*. Each vertex of $L(G)$ represents an edge of G, and two vertices of $L(G)$ are adjacent iff the corresponding edges share a common endpoint in G (i.e. edges are "adjacent"/"incident").

a

d

ſ $\begin{array}{c|cccc}\n & e_1 & e_2 & e_3 & e_4 & e_5 \\
a & 0 & 0 & 0 & 0 & 0 \\
b & 1 & 1 & 0 & 1 & 0 \\
c & 0 & 1 & 1 & 0 & 2\n\end{array}$ $d \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$

 e^{λ}

b

 $e₃$ \mathfrak{C}'

 $\begin{bmatrix} a & 0 & 1 & 0 & 0 \\ b & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$ $a\ b\ c\ a$

 $d\begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$

 \mathcal{C}

c

 e_5

a

Adjacency matrix:

Incidence matrix:

 $\begin{bmatrix} a \\ b \end{bmatrix}$

 $\begin{bmatrix} a \\ b \end{bmatrix}$

d

 e^{λ}

b

 e_{3} \mathfrak{C}'

 $a \quad b \quad c \quad a$ $a \uparrow \stackrel{\circ}{0}$ 1 0 0 $\begin{bmatrix} \overline{b} & -1 & 0 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & -1 & 1 & 1 \end{bmatrix}$ $d \begin{bmatrix} 0 & -1 & -1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 &$

 e_1 e_2 e_3 e_4 e_5 $a\mathbf{r}$ -1 0 0 0 0 $\begin{array}{ccccccc}\n\overline{b} & 1 & -1 & 0 & -1 & 0\n\end{array}$ $\begin{bmatrix} 0 & 1 & -1 & 0 & 2 \end{bmatrix}$ $d \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$

 \mathcal{C}_2

c

 e_5

Ί

ן

Cheatsheet: Graph Theory \Box Discrete M \forall th, \blacktriangledown Spring 2024

 $1 E^2$ "Closed" term

Term

- ∗ Walk^{z} is an alternating sequence of vertices and edges: $l = v_1 e_1 v_2 \dots e_{n-1} v_n$ $l = v_1 e_1 v_2 \dots e_{n-1} v_n$ $l = v_1 e_1 v_2 \dots e_{n-1} v_n$. ◦ Trail is a walk with distinct edges.
	- Path is a walk with distinct vertices (and therefore distinct edges).
	- A walk is closed if it starts and ends at the same vertex. Otherwise, it is open.
	- Circuit is a closed trail.
	- Cycle is a closed path.
- ∗ Length of a path (walk, trail) $l = u \rightarrow v$ is the number of edges in it: $|l| = |E(l)|$.
- ∗ Girth^E is the length of the shortest cycle in the graph.
- $*$ Distance $\mathbb{E}^{\mathbf{z}}$ dist (u, v) between two vertices is the length of the shortest path $u \rightsquigarrow v.$
- \circ $\varepsilon(v) = \max_{v} \text{dist}(v, u)$ is the **eccentricity** of the vertex v.
- $\int_0^{\infty} \frac{u \in V}{v \in V}$ is the **radius** of the graph *G*.
- \circ diam(*G*) = max $\varepsilon(v)$ is the **diameter** of the graph *G*.
- \circ center(G) = { $v | \varepsilon(v) = \text{rad}(G)$ } is the **center** of the graph G.
- ∗ Clique^{z} $Q \subseteq V$ is a set of vertices inducing a complete subgraph.
- ∗ Stable set^{$E' S ⊆ V$ is a set of independent (pairwise non-adjacent) vertices.}

∗ Perfect matching^{1[2](https://en.wikipedia.org/wiki/Perfect_matching)} is a matching that covers all vertices in the graph.

- A perfect matching (if it exists) is always a minimum edge cover (but not vice-versa!).
- ∗ Vertex cover^{z} $R \subseteq V$ is a set of vertices "covering" all edges.

not edge cover edge cover

not minimal not minimum

edge cover minimal not minimum

edge cover minimal

minimum

- ∗ Cut vertex (articulation point)[¤] is a vertex whose removal increases the number of connected components.
- ∗ Bridge^ø is an edge whose removal increases the number of connected components.
- ∗ Biconnected graph^{1[2](https://en.wikipedia.org/wiki/Biconnected_graph)'} is a connected "nonseparable" graph, which means that the removal of any vertex does not make the graph disconnected. Alternatively, this is a graph without cut vertices.
- ∗ **Biconnectivity** can be defined as a relation on edges $R \subseteq E^2$:
	- Two edges are called biconnected if there exist two vertex-disjoint paths between the ends of these edges.
	- Trivially, this relation is an equivalence relation.
	- Equivalence classes of this relation are called **biconnected components^{te}**, also known as **blocks**.
- ∗ Edge biconnectivity can be defined as a relation on vertices $R \subseteq V^2$:
	- Two vertices are called edge-biconnected if there exist two edge-disjoint paths between them.
	- Trivially, this relation is an equivalence relation.
	- Equivalence classes of this relation are called edge-biconnected components (or 2-edge-connected components).
- ∗ **Vertex connectivity** \mathbf{z}' $\varkappa(G)$ is the minimum number of vertices that has to be removed in order to make the graph disconnected or trivial (singleton). Equivalently, it is the largest k for which the graph G is k -vertex-connected.
- ∗ *k*-vertex-connected graph^{1[2](https://en.wikipedia.org/wiki/K-vertex-connected_graph)} is a graph that remains connected after less than *k* vertices are removed, *i.e.* $\varkappa(G) \geq k$. \circ Corollary of Menger's theorem: graph $G = \langle V, E \rangle$ is k-vertex-connected if, for every pair of vertices $u, v \in V$, it is possible to find k vertex-independent (internally vertex-disjoint) paths between u and v .
	- \circ k-vertex-connected graphs are also called simply k-connected.
	- 1-connected graphs are called connected, 2-connected are biconnected, 3-connected are triconnected, etc.
	- Note the "exceptions":
		- Singleton graph K_1 has $\varkappa(K_1) = 0$, so it is **not** 1-connected, but still considered connected.
		- Graph K_2 has $\varkappa(K_2) = 1$, so it is **not** 2-connected, but considered biconnected, so it can be a block.
- ∗ Edge connectivity[⊠] $\lambda(G)$ is the minimum number of edges that has to be removed in order to make the graph disconnected or trivial (singleton). Equivalently, it is the largest k for which the graph G is k -edge-connected.
- ∗ *k*-edge-connected graph^{1[2](https://en.wikipedia.org/wiki/K-edge-connected_graph)} is a graph that remains connected after less than *k* edges are removed, *i.e.* $\lambda(G) \geq k$.
	- \circ Corollary of Menger's theorem: graph $G = \langle V, E \rangle$ is k-edge-connected if, for every pair of vertices $u, v \in V$, it is possible to find k *edge-disjoint* paths between u and v .
	- 2-edge-connected are called edge-biconnected, 3-edge-connected are edge-triconnected, etc.
	- Note the "exception":
		- Singleton graph K_1 has $\lambda(K_1) = 0$, so it is **not** 2-edge-connected, but considered edge-biconnected, so it can be a 2-edge-connected component.
- \ast WHITNEY's THEOREM. For any graph G, $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

 $\kappa(G) = 2, \lambda(G) = 3, \delta(G) = 3, \Delta(G) = 6$

- ∗ Tree[⊠] is a connected undirected acyclic graph.
- ∗ Forest^{t[2](https://en.wikipedia.org/wiki/Tree_(graph_theory)#Forest)} is an undirected acyclic graph, *i.e.* a disjoint union of trees.
- ∗ An unrooted tree (free tree) is a tree without any designated root.
- ∗ A rooted tree is a tree in which one vertex has been designated the root.
	- \circ In a rooted tree, the **parent** of a vertex v is the vertex connected to v on the path to the root.
	- \circ A child of a vertex v is a vertex of which v is the parent.
	- \circ A sibling to a vertex v is any other vertex on the tree which has the same parent as v .
	- \circ A leaf is a vertex with no children. Equivalently, leaf is a *pendant vertex, i.e.* deg(v) = 1.
	- An internal vertex is a vertex that is not a leaf.
	- A k-ary tree is a rooted tree in which each vertex has at most *k* children. 2-ary trees are called **binary trees**.
- ∗ A labeled tree $^{\mathbb{Z}}$ is a tree in which each vertex is given a unique *label*, e.g., 1, [2](https://en.wikipedia.org/wiki/Labeled_tree), . . . , n.
- * CAYLEY'S FORMULA^E. Number of labeled trees on *n* vertices is n^{n-2} n^{n-2} n^{n-2} .
- ∗ Prüfer code[⊠] is a unique sequence of labels $\{1,\ldots,n\}$ of length $(n-2)$ $(n-2)$ $(n-2)$ associated with the labeled tree on *n* vertices. \circ ENCODING (iterative algorithm for converting tree T labeled with $\{1, \ldots, n\}$ into a Prüfer sequence K):
	- On each iteration, remove the leaf with the smallest label, and extend K with a single neighbour of this leaf.
	- After $(n-2)$ iterations, the tree will be left with two adjacent vertices—there is no need to encode them, because there is only one unique tree on 2 vertices, which requires 0 bits of information to encode.

- \circ **DECODING** (iterative algorithm for converting a Prüfer sequence K into a tree T):
	- Given a Prüfer code K of length $(n-2)$, construct a set of "leaves" $W = \{1, \ldots, n\} \setminus K$.
	- On each iteration:
		- (1) Pop the *first* element of K (denote it as k) and the *minimum* label in W (denote it as w).
		- (2) Connect k and w with an edge $\langle k, w \rangle$ in the tree T.
		- (3) If $k \notin K$, then extend the set of "leaves" $W \coloneqq W \cup \{k\}.$
	- After $(n-2)$ iterations, the sequence K will be empty, and the set W will contain exactly two vertices connect them with an edge.