Graph Theory Cheatsheet 5

- * **Graph**^{*L*} is an ordered pair $G = \langle V, E \rangle$, where $V = \{v_1, \ldots, v_n\}$ is a set of vertices, and $E = \{e_1, \ldots, e_m\}$ is a set of edges. • Given a graph G, the notation V(G) denotes the vertices of G.
 - Given a graph G, the notation E(G) denotes the edges of G.
 - In fact, $V(\cdot)$ and $E(\cdot)$ functions allow to access "vertices" and "edges" of any object possessing them (e.g., paths).
- * **Order** of a graph G is the number of vertices in it: |V(G)|.
- * **Size** of a graph *G* is the number of edges in it: |E(G)|.
- * Simple **undirected**^{\mathbb{Z}} graphs have $E \subseteq V^{(2)}$, *i.e.* each edge $e_i \in E$ between vertices u and v is denoted by $\{u, v\} \in V^{(2)}$. Such undirected edges are also called links or lines.

• $A^{(k)} = \{\{x_1, \dots, x_k\} \mid x_1 \neq \dots \neq x_k \in A\} = \{S \mid S \subseteq A, |S| = k\}$ is the set of k-sized subsets of A.

* Simple **directed**^{*Z*} graphs have $E \subseteq V^2$, *i.e.* each edge $e_i \in E$ from vertex *u* to *v* is denoted by an ordered pair $\langle u, v \rangle \in V^2$. Such directed edges are also called arcs or arrows.

• $A^k = A \times \cdots \times A = \{(x_1, \dots, x_k) \mid x_1, \dots, x_k \in A\}$ is the set of *k*-tuples (Cartesian *k*-power of *A*).

- ∗ **Multi-edges**[∠] are edges that have the same end nodes.
- **Loop**^{\square} is an edge that connects a vertex to itself.
- * **Simple graph**^{\mathcal{L}} is a graph without multi-edges and loops.
- * **Multigraph**^{\mathbf{E}} is a graph with multi-edges.
- * **Pseudograph**^{\mathbb{Z}} is a multigraph with loops.
- ∗ **Null graph^{^Ľ**} is a "graph" without vertices.
- * Trivial (singleton) graph is a graph consisting of a single vertex.
- * **Empty (edgeless)** graph^{\mathbb{Z}} is a graph without edges.
- * **Complete graph**^{\mathcal{L}} K_n is a simple graph in which every pair of distinct vertices is connected by an edge.
- * Weighted graph^C G = (V, E, w) is a graph in which each edge has an associated numerical value (the weight) represented by the weight function $w : E \rightarrow \text{Num}$.
- * **Subgraph**^{\mathcal{L}} of a graph $G = \langle V, E \rangle$ is another graph $G' = \langle V', E' \rangle$ such that $V' \subseteq V, E' \subseteq E$. Designated as $G' \subseteq G$.
- * **Spanning (partial) subgraph**^{\mathcal{C}} is a subgraph that includes all vertices of a graph.
- * **Induces subgraph**^{\mathbb{Z}} of a graph $G = \langle V, E \rangle$ is another graph G' formed from a subset S of the vertices of the graph and *all* the edges (from the original graph) connecting pairs of vertices in that subset. Formally, $G' = G[S] = \langle V', E' \rangle$, where $S \subseteq V$, $V' = V \cap S$, $E' = \{e \in E \mid \exists v \in S : e \mid v\}$.
- * **Adjacency**^{*L*} is the relation between two vertices connected with an edge.
- * Adjacency matrix^{\mathbb{Z}} is a square matrix $A_{V \times V}$ of an adjacency relation.
- For simple graphs, adjacency matrix is binary, *i.e.* $A_{ij} \in \{0, 1\}$.
 - For directed graphs, $A_{ij} \in \{0, 1, -1\}$.
 - For multigraphs, adjacency matrix contains edge multiplicities, *i.e.* $A_{ii} \in \mathbb{N}_0$.
- ∗ **Incidence**[∠] is a relation between an edge and its endpoints.
- * **Incidence matrix**^{\mathbb{Z}} is a Boolean matrix $B_{V \times E}$ of an incidence relation.
- * **Degree**^{\mathbb{Z}} deg(v) the number of edges incident to v (loops are counted twice).

 - δ(G) = min deg(v) is the minimum degree.
 Δ(G) = max deg(v) is the maximum degree.
 - HANDSHAKING LEMMA. $\sum_{v \in V} \deg(v) = 2|E|$.
- * A graph is called *r*-regular^{\mathbb{C}} if all its vertices have the same degree: $\forall v \in V : \deg(v) = r$.
- * **Complement graph**^{\mathcal{L}} of a graph G is a graph H on the same vertices such that two distinct vertices of H are adjacent iff they are non-adjacent in G.
- * Intersection graph^{*L*} of a family of sets $F = \{S_i\}$ is a graph $G = \Omega(F) = \langle V, E \rangle$ such that each vertex $v_i \in V$ denotes the set S_i , *i.e.* V = F, and the two vertices v_i and v_j are adjacent whenever the corresponding sets S_i and S_j have a non-empty intersection, *i.e.* $E = \{ \langle v_i, v_j \rangle \mid i \neq j, S_i \cap S_j \neq \emptyset \}.$
- * Line graph^{\mathcal{L}} of a graph $G = \langle V, E \rangle$ is another graph $L(G) = \Omega(E)$ that represents the adjacencies between edges of G. Each vertex of L(G) represents an edge of G, and two vertices of L(G) are adjacent iff the corresponding edges share a common endpoint in *G* (*i.e.* edges are "adjacent"/"incident").

Cheatsheet: Graph Theory

- * Walk^{\mathcal{C}} is an alternating sequence of vertices and edges: $l = v_1 e_1 v_2 \dots e_{n-1} v_n$. • **Trail** is a walk with distinct edges.
 - Path is a walk with distinct vertices (and therefore distinct edges).
 - A walk is closed if it starts and ends at the same vertex. Otherwise, it is open.
 - Circuit is a closed trail.
 - Cycle is a closed path.
- * Length of a path (walk, trail) $l = u \rightsquigarrow v$ is the number of edges in it: |l| = |E(l)|.
- * **Girth**^L is the length of the shortest cycle in the graph.
- * **Distance**^{\mathbb{E}} dist(*u*, *v*) between two vertices is the length of the shortest path $u \rightsquigarrow v$.
 - $\varepsilon(v) = \max_{u} \operatorname{dist}(v, u)$ is the **eccentricity** of the vertex *v*.
 - $\operatorname{rad}(G) = \min_{v \in V} \varepsilon(v)$ is the **radius** of the graph *G*.

 - diam(G) = $\max_{v \in V} \varepsilon(v)$ is the **diameter** of the graph G. center(G) = { $v | \varepsilon(v) = rad(G)$ } is the **center** of the graph G.
- * **Clique** ${}^{\mathbf{L}} Q \subseteq V$ is a set of vertices inducing a complete subgraph.
- * Stable set ${}^{\mathbf{C}} S \subseteq V$ is a set of independent (pairwise non-adjacent) vertices.

* **Matching**^{\mathbb{Z}} $M \subseteq E$ is a set of independent (pairwise non-adjacent) edges.

* **Perfect matching**^L is a matching that covers all vertices in the graph.

- A perfect matching (if it exists) is always a minimum edge cover (but not vice-versa!).
- * Vertex cover ${}^{\mathbb{C}} R \subseteq V$ is a set of vertices "covering" all edges.

edge cover not minimal not minimum

edge cover minimal not minimum

edge cover minimal

minimum

Term	\mathbf{V}^{1}	E ²	"Closed" term
Walk	+	+	Closed walk
Trail	+	-	Circuit
Path	-	-	Cycle
	_	+	(impossible)

Cheatsheet: Graph Theory

- * **Cut vertex** (articulation point)^{\mathbb{C}} is a vertex whose removal increases the number of connected components.
- ∗ **Bridge**^ℓ is an edge whose removal increases the number of connected components.
- * **Biconnected graph**^{\mathcal{E}} is a connected "nonseparable" graph, which means that the removal of any vertex does not make the graph disconnected. Alternatively, this is a graph without *cut vertices*.
- * **Biconnectivity** can be defined as a relation on edges $R \subseteq E^2$:
 - Two edges are called *biconnected* if there exist two *vertex-disjoint* paths between the ends of these edges.
 - Trivially, this relation is an equivalence relation.
 - Equivalence classes of this relation are called **biconnected components**[™], also known as **blocks**.
- * Edge biconnectivity can be defined as a relation on vertices $R \subseteq V^2$:
 - Two vertices are called *edge-biconnected* if there exist two *edge-disjoint* paths between them.
 - $\circ~$ Trivially, this relation is an equivalence relation.
 - Equivalence classes of this relation are called **edge-biconnected components** (or 2-edge-connected components).
- * Vertex connectivity $\bowtie (G)$ is the minimum number of vertices that has to be removed in order to make the graph disconnected or trivial (singleton). Equivalently, it is the largest *k* for which the graph *G* is *k*-vertex-connected.
- *k*-vertex-connected graph^E is a graph that remains connected after less than *k* vertices are removed, *i.e. n*(*G*) ≥ *k*.
 Corollary of Menger's theorem: graph *G* = ⟨*V*, *E*⟩ is *k*-vertex-connected if, for every pair of vertices *u*, *v* ∈ *V*, it is possible to find *k* vertex-independent (internally vertex-disjoint) paths between *u* and *v*.
 - *k*-vertex-connected graphs are also called simply *k*-connected.
 - 1-connected graphs are called *connected*, 2-connected are *biconnected*, 3-connected are *triconnected*, *etc*.
 - Note the "exceptions":
 - Singleton graph K_1 has $\varkappa(K_1) = 0$, so it is **not** *1-connected*, but still considered *connected*.
 - Graph K_2 has $\varkappa(K_2) = 1$, so it is **not** 2-connected, but considered biconnected, so it can be a block.
- * **Edge connectivity** $\mathcal{L}^{\mathcal{L}} \lambda(G)$ is the minimum number of edges that has to be removed in order to make the graph disconnected or trivial (singleton). Equivalently, it is the largest *k* for which the graph *G* is *k*-edge-connected.
- * *k*-edge-connected graph^{*L*} is a graph that remains connected after less than *k* edges are removed, *i.e.* $\lambda(G) \ge k$.
 - Corollary of Menger's theorem: graph $G = \langle V, E \rangle$ is *k*-edge-connected if, for every pair of vertices $u, v \in V$, it is possible to find *k edge-disjoint* paths between *u* and *v*.
 - 2-edge-connected are called *edge-biconnected*, 3-edge-connected are *edge-triconnected*, *etc.*
 - Note the "exception":
 - Singleton graph K_1 has $\lambda(K_1) = 0$, so it is **not** 2-edge-connected, but considered edge-biconnected, so it can be a 2-edge-connected component.
- * Whitney's Theorem. For any graph G, $\varkappa(G) \leq \lambda(G) \leq \delta(G)$.

 $\varkappa(G) = 2, \lambda(G) = 3, \delta(G) = 3, \Delta(G) = 6$

Cheatsheet: Graph Theory

- * **Tree**^{\mathbb{Z}} is a connected undirected acyclic graph.
- ∗ **Forest[™]** is an undirected acyclic graph, *i.e.* a disjoint union of trees.
- * An unrooted tree (free tree) is a tree without any designated root.
- * A rooted tree is a tree in which one vertex has been designated the root.
 - In a rooted tree, the **parent** of a vertex v is the vertex connected to v on the path to the root.
 - A **child** of a vertex v is a vertex of which v is the parent.
 - A **sibling** to a vertex v is any other vertex on the tree which has the same parent as v.
 - A **leaf** is a vertex with no children. Equivalently, **leaf** is a *pendant vertex*, *i.e.* deg(v) = 1.
 - An **internal vertex** is a vertex that is not a leaf.
 - A *k*-ary tree is a rooted tree in which each vertex has at most *k* children. *2-ary trees* are called **binary trees**.
- * A **labeled tree**^{\mathbb{C}} is a tree in which each vertex is given a unique *label*, *e.g.*, 1, 2, ..., *n*.
- * CAYLEY'S FORMULA^{\mathbb{Z}}. Number of labeled trees on *n* vertices is n^{n-2} .
- * Prüfer code[™] is a unique sequence of labels {1,..., n} of length (n − 2) associated with the labeled tree on n vertices.
 ENCODING (iterative algorithm for converting tree T labeled with {1,..., n} into a Prüfer sequence K):
 - On each iteration, remove the leaf with the smallest label, and extend K with a single neighbour of this leaf.
 - After (n-2) iterations, the tree will be left with *two adjacent* vertices there is no need to encode them, because there is only one unique tree on 2 vertices, which requires 0 bits of information to encode.

- **DECODING** (iterative algorithm for converting a Prüfer sequence *K* into a tree *T*):
 - Given a Prüfer code *K* of length (n 2), construct a set of "leaves" $W = \{1, ..., n\} \setminus K$.
 - On each iteration:
 - (1) Pop the *first* element of *K* (denote it as *k*) and the *minimum* label in *W* (denote it as *w*).
 - (2) Connect *k* and *w* with an edge $\langle k, w \rangle$ in the tree *T*.
 - (3) If $k \notin K$, then extend the set of "leaves" $W \coloneqq W \cup \{k\}$.
 - After (n-2) iterations, the sequence K will be empty, and the set W will contain exactly two vertices connect them with an edge.