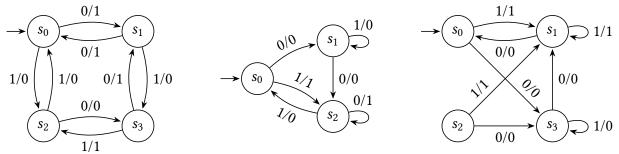
Homework #6	${\mathcal D}$ iscrete ${\mathcal M}_{orall}$ th
Automata Theory	▼ Spring 2024

- For each given regular expression *P*, construct a DFA (Deterministic Finite Automaton), and find the number of accepted word of length at most 5, i.e. the size of the set L' = {w ∈ L(P) | |w| ≤ 5}. For "any" (.) and "negative" ([^.]) matches, assume that the alphabet is Σ = {a, b, c, d}.
 - (a) $P_1 = ab*$ (b) $P_2 = a+b?c$ (c) $P_3 = [^cd]+c{3}$ (d) $P_4 = [^a](.|ddd)?$ (e) $P_5 = d(a|bc)*$ (f) $P_6 = ((a|ab)[cd]){2}$
- 2. Describe the set of strings defined by each of these sets of productions in EBNF[™] (extended Backus-Naur form).

(a) $\langle string \rangle$	$::= \langle L \rangle + \langle D \rangle? \langle L \rangle +$	(c)	(string)	$::= \langle L \rangle^* \; (\langle D \rangle +)? \; \langle L \rangle^*$
$\langle L \rangle$::=a b c		$\langle L \rangle$::=x y
$\langle D \rangle$::=0 1		$\langle D \rangle$::=0 1
(b) $\langle string \rangle$	$::= \langle sign \rangle? \langle N \rangle$	(d)	$\langle string \rangle$	$::= \langle C \rangle \langle R \rangle^*$
(sign)	::= '+' '-'		$\langle C \rangle$	$::= a \mid \ldots \mid z \mid A \mid \ldots \mid Z$
$\langle N angle$	$::= \langle D \rangle \; (\langle D \rangle \mid 0)^*$		$\langle D \rangle$::=0 9
$\langle D \rangle$::=1 9		$\langle R \rangle$	$::= \langle C \rangle \mid \langle D \rangle \mid `_'$

- 3. Let $\mathcal{G} = \langle V, T, S, P \rangle$ be the phrase-structure grammar with vocabulary $V = \{A, S\}$, terminal symbols $T = \{0, 1\}$, start symbol S = S, and set of productions $P: S \rightarrow 1S, S \rightarrow 00A, A \rightarrow 0A, A \rightarrow 0$.
 - (a) Show that 111000 belongs to the language generated by \mathcal{G} .
 - (b) Show that 11001 does not belong to the language generated by \mathcal{G} .
 - (c) What is the language generated by \mathcal{G} ?
- 4. Find the output generated from the input string 01110 for each of the following Mealy machines.



- 5. Construct a Moore machine for each of the following descriptions.
 - (a) Determine the residue modulo 3 of the input treated as a binary number. For example, for input ε (which corresponds to "value" 0) the residue is 0; 101 (5 in decimal) has residue 2; and 1010 (value 10) has residue 1.
 - (b) Output the residue modulo 5 of the input from $\{0, 1, 2\}^*$ treated as a ternary (base 3) number.
 - (c) Output *A* if the binary input ends with 101; output *B* if it ends with 110; otherwise output *C*.
- 6. Show that regular languages are *closed* under the following operations.
 - (a) Union, that is, if L_1 and L_2 are regular languages, then $L_1 \cup L_2$ is also regular.
 - (b) Concatenation, that is, if L_1 and L_2 are regular languages, then $L_1 \cdot L_2$ is also regular.
 - (c) Kleene star, that is, if *L* is a regular language, then L^* is also regular.
 - (d) Complement, that is, if *L* is a regular language, then $\overline{L} = \Sigma^* L$ is also regular.
 - (e) Intersection, that is, if L_1 and L_2 are regular languages, then $L_1 \cap L_2$ is also regular.

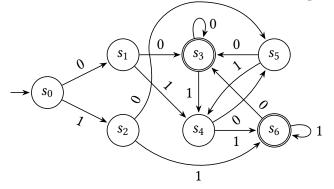
- 7. Determine whether the following languages are regular or not. For non-regular languages, use Pumping lemma to prove that they are not regular. For each regular language, provide a regular expression and construct an ε -NFA.
 - (a) $L_1 = \{ w \in \{0, 1\}^* | \text{ length of } w \text{ is odd} \}$

(b) $L_2 = \{0^n 1^n \mid n \in \mathbb{N}\}$

(c) $L_3 = \{ w \in \{0, 1\}^* \mid w \text{ contains an even number of } 1s \}$

(d)
$$L_4 = \{1^{n^2} \mid n \in \mathbb{N}\}$$

- 8. Consider a finite-state automaton $M = (\Sigma, Q, q_0, F, \delta)$ and a non-negative integer k. Let R_k be the relation on the set of states of M such that $s R_k t$ if and only if for every input string $w \in \Sigma^*$ with $|w| \le k$, $\delta(s, w)$ and $\delta(t, w)$ are both final states or both not final states. Furthermore, let R^* be the relation on the set of states of M such that $s R^* t$ if and only if for every input string $w \in \Sigma^*$, regardless of length, $\delta(s, w)$ and $\delta(t, w)$ are both final states or both not final states.
 - (a) Show that for every nonnegative integer k, R_k is an equivalence relation on S. Two states s and t are called k-equivalent if $s R_k t$.
 - (b) Show that R^* is an equivalence relation on *S*. Two states *s* and *t* are called *-equivalent if *s* R^* *t*.
 - (c) Show that if two states *s* and *t* are *k*-equivalent (k > 0), then they are also (k 1)-equivalent.
 - (d) Show that the equivalence classes of R_k are a *refinement* of the equivalence classes of R_{k-1} .
 - (e) Show that if two states *s* and *t* are *k*-equivalent for every non-negative integer *k*, then they are *-equivalent.
 - (f) Show that all states in a given R^* -equivalence class are final or all are not final.
 - (g) Show that if two states *s* and *t* are *-equivalent, then $\delta(s, a)$ and $\delta(t, a)$ are also *-equivalent for all $a \in \Sigma$.
- 9. Consider the finite-state automaton $M = (\Sigma, Q, q_0, F, \delta)$ depicted below.



- (a) Find the *k*-equivalence classes of *M* for k = 0, 1, 2, 3.
- (b) Find the *-equivalence classes of M.
- (c) Construct the quotient automaton \overline{M} of M.
 - ▶ The quotient automaton \overline{M} of the deterministic finite-state automaton $M = (\Sigma, S, s_0, F, \delta)$ is the finite state automaton $\overline{M} = (\Sigma, \overline{S}, [s_0]_{R^*}, \overline{F}, \overline{\delta})$, where the set of states \overline{S} is the set of R^* -equivalence classes of S; the transition function $\overline{\delta}$ is defined by $\overline{\delta}([s]_{R^*}, a) = [\delta(s, a)]_{R^*}$ for all states $[s]_{R^*}$ of \overline{M} and input symbols $a \in \Sigma$; and \overline{F} is the set consisting of R^* -equivalence classes of M.

10. Solve the following regex crosswords¹. Fill each cell with a single ASCII character (an uppercase letter, a digit, a punctuation mark, or a space). Each row/column, when read left to right or top to bottom must match the regular expression(s) given for that row/column.

