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Definition and Basic Properties

Definition 1: A Boolean algebra is a bounded distributive lattice (B, V, A, L, T) with complement
() : B— BsuchthatzVa' =Tandz Az’ = L.

Example: (P(A),U,N, 0, A) with X’ = A\ X is a Boolean algebra.

Example (Digital Circuit Design): Consider 3-bit binary values as Boolean algebra:
- Elements: {000, 001, 010, 011,100, 101,110, 111}

« Order: Bitwise comparison (001 < 011 since 0 < 0,0<1,1<1)

+ Join: Bitwise OR (010 V 101 = 111)

» Meet: Bitwise AND (110 A 101 = 100)

« Complement: Bitwise NOT (001" = 110)

This directly corresponds to logic gates: OR, AND, NOT gates in computer processors.

Note: Logical reading: “join” — V, “meet” = A, “complement” - —.
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Example: Database Query Lattice

Example: A database has tables Students, Courses, Enrollments.
+ Let @); = “Computer Science students”

+ Let @), = “Students in Math courses”

+ Let @3 = “Graduate students”

Consider queries as lattice elements ordered by result size (specificity).

Lattice Operations:

+ @, V Q4 = “Students in CS OR Math courses” (larger result set)

+ Q1 N Q4 = “CS students taking Math courses” (smaller result set)
+ Q1 N Q3 = “Graduate CS students” (most specific)

Why this matters: Query optimizers use this structure to:
1. Find equivalent but more efficient queries.

2. Cache common subqueries.

3. Predict result set sizes for cost estimation.
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Complement is Unique

Theorem 1: Complements are unique in a Boolean algebra.

Proof: Suppose for some element a we have two complements x and y.

That is, z = y.

X

=z AT
=zA(aVy)
=(zANa)V(zxAy)
=1V(zAy)
=(aAy)V(zAy)
=(aVz)Ay
=TAy

=Yy

T is the identity for A

by definition of complement: T =a V y
A distributes over V

by definition of complement: x Aa = 1L
by definition of complement: 1 =a Ay
A distributes over V

by definition of complement: aVx =T
T is the identity for A
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De Morgan’s Laws

Theorem 2 (De Morgan): (xVy) =2’ Ay" and (x Ay)’ =z’ V ¢ in any Boolean algebra.
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Digital Logic Circuits

Definition 2: A logic gate is a physical device that implements a Boolean function, taking binary

inputs and producing a binary output.

Gate Formula Description

AND AAB Outputs 1 only when both inputs are 1
OR AV B Outputs 1 when at least one input is 1
NOT -A Outputs the opposite of the input
NAND —(A A B) Outputs 0 only when both inputs are 1
NOR  —(AV B) Outputs 0 when at least one input is 1
XOR Ae@B Outputs 1 when inputs differ

XNOR A=B Outputs 1 when inputs are the same

DD

o B B

Note: NAND and NOR gates are universal — any Boolean function can be implemented using only NAND
gates (or only NOR gates). For example, to implement AND using NAND:

ANB=-~(ANB)=—~(ARB) = (AR B) A (AR B)
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Combinational Logic

Definition 3: A combinational circuit is a circuit where the output depends only on the current input
values, without any memory or state.

Example (Half Adder): Adds two single bits:
e Sum: S =A@ B
« Carry: C =AAB

Example (Full Adder): Adds two bits plus a carry-in:
cSum: S =A@ BaC,
« Carry-out: C,, = (AAB)V (C, N (A® B))

(o)
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Sequential Logic and Memory

Definition 4: A sequential circuit is a circuit where the output depends on both current inputs and
previous state (memory).

Example (Flip-Flops):

« SR Latch: Set-Reset memory element.

- D Flip-Flop: Data storage triggered by clock edge.
 JK Flip-Flop: Eliminates forbidden state of SR latch.
- T Flip-Flop: Toggle flip-flop for counters.
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Normal Forms

Definition 5: A [iteral is a Boolean variable or its negation (e.g., x, —).

Definition 6 (DNF): A Boolean formula is in disjunctive normal form (DNF) if it is a disjunction (OR) of
terms — conjunctions (AND) of literals.

Example: f(z,y,2) = (x AyA—-z)V(~zAz)V(-yA—-2)V
l term L term L term I I‘En‘

Definition 7 (CNF): A Boolean formula is in conjunctive normal form (CNF) if it is a conjunction
(AND) of clauses — disjunctions (OR) of literals.

Example: f(x,y,z) =(xVyV-2)A(—zV2)A(-yV-2)A =z

L 1 L

clause clause clause clause
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Minterms and Maxterms

Definition 8 (Minterm and Maxterm):
« A minterm is a product (AND) of literals where each variable appears exactly once.
« A maxterm is a sum (OR) of literals where each variable appears exactly once.

Note: A minterm (maxterm) is a function that evaluates to 1 (0, respectively) for exactly one combination
of variable values.

Example: f(x,y,z) = zyz is a minterm, and g(x,y, 2) = © + Y + z is a maxterm for variables z, y, z.
« f(z,y,2) = 1 only on input 101,ie,z =1,y = 0, z = 1, correspending to the minterm zyz.
+ g(z,y,2) = 0 only on input 010, i.e, z = 0,y = 1, z = 0, correspending to the maxterm T + y + Z.
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Canonical Forms

Definition 9 (SoP): Every Boolean function can be uniquely expressed as a sum of minterms (SoP, Sum
of Products) corresponding to rows where the function evaluates to 1.

Definition 10 (PoS): Every Boolean function can be uniquely expressed as a product of maxterms (PoS,
Product of Sums) corresponding to rows where the function evaluates to 0.
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Karnaugh Maps

Definition 11: A Karnaugh map (K-map) is a graphical method for simplifying Boolean expressions
by visually identifying adjacent minterms that can be combined.
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Zhegalkin Polynomials

Definition 12: A Zhegalkin polynomial is a representation of a Boolean function as a polynomial over
GF(2) using XOR () and AND (A, often omitted) operations.

Theorem 3: Every Boolean function has a unique representation as a Zhegalkin polynomial:

f(wla-“axn) = @ (aSHxi)
Sc{1,...,n} 1€S

where ag € {0,1} and & denotes XOR.

Example: f(z,y)=zVy=z®ydzy
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Binary Decision Diagrams (BDDs)

Definition 13 (BDD): A binary decision diagram (BDD) is a directed acyclic graph representing a
Boolean function, where each non-terminal node represents a variable test and edges represent variable
assignments.

Definition 14 (ROBDD): A reduced ordered binary decision diagram (ROBDD) is an ordered BDD
with a fixed variable ordering where:

« No variable appears more than once on any path

» No two nodes have identical low and high successors

+ No node has identical low and high successors

Theorem 4: Every Boolean function has a unique reduced ordered binary decision diagram (ROBDD)
representation for a given variable ordering.
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TODO
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