Boolean Algebra

Discrete Math, Fall 2025

Konstantin Chukharev

Boolean Algebra

"Мы почитаем всех нулями, А единицами — себя."

- А.С. Пушкин, «Евгений Онегин»

Gottfried Wilhelm Leibniz

George Boole

Augustus De Morgan

Charles Sanders Peirce

Claude Shannon

Definition and Basic Properties

Definition 1: A *Boolean algebra* is a bounded distributive lattice $(B, \vee, \wedge, \perp, \top)$ with complement $(\cdot)': B \to B$ such that $x \vee x' = \top$ and $x \wedge x' = \bot$.

Example: $(\mathcal{P}(A), \cup, \cap, \emptyset, A)$ with $X' = A \setminus X$ is a Boolean algebra.

Example (Digital Circuit Design): Consider 3-bit binary values as Boolean algebra:

- Elements: {000, 001, 010, 011, 100, 101, 110, 111}
- Order: Bitwise comparison (001 \leq 011 since 0 \leq 0, 0 \leq 1, 1 \leq 1)
- Join: Bitwise OR $(010 \lor 101 = 111)$
- Meet: Bitwise AND $(110 \land 101 = 100)$
- Complement: Bitwise NOT (001' = 110)

This directly corresponds to logic gates: OR, AND, NOT gates in computer processors.

Note: Logical reading: "join" $\mapsto \lor$, "meet" $\mapsto \land$, "complement" $\mapsto \lnot$.

Example: Database Query Lattice

Example: A database has tables Students, Courses, Enrollments.

- Let Q_1 = "Computer Science students"
- Let $Q_2 =$ "Students in Math courses"
- Let Q_3 = "Graduate students"

Consider queries as lattice elements ordered by result size (specificity).

Lattice Operations:

- $Q_1 \vee Q_2 =$ "Students in CS OR Math courses" (larger result set)
- $Q_1 \wedge Q_2 =$ "CS students taking Math courses" (smaller result set)
- $Q_1 \wedge Q_3 =$ "Graduate CS students" (most specific)

Why this matters: Query optimizers use this structure to:

- 1. Find equivalent but more efficient queries.
- **2.** Cache common subqueries.
- **3.** Predict result set sizes for cost estimation.

Complement is Unique

Theorem 1: Complements are unique in a Boolean algebra.

Proof: Suppose for some element a we have two complements x and y.

That is, x = y.

De Morgan's Laws

Theorem 2 (De Morgan): $(x \lor y)' = x' \land y'$ and $(x \land y)' = x' \lor y'$ in any Boolean algebra.

Digital Logic Circuits

Definition 2: A *logic gate* is a physical device that implements a Boolean function, taking binary inputs and producing a binary output.

Gate	Formula	Description	
AND	$A \wedge B$	Outputs 1 only when both inputs are 1	
OR	$A \vee B$	Outputs 1 when at least one input is 1	AND
NOT	$\neg A$	Outputs the opposite of the input	
NAND	$\neg(A \land B)$	Outputs 0 only when both inputs are 1	
NOR	$\neg(A \vee B)$	Outputs 0 when at least one input is 1	-
XOR	$A \oplus B$	Outputs 1 when inputs differ	→ NAND →
XNOR	$A \equiv B$	Outputs 1 when inputs are the same	

Note: NAND and NOR gates are *universal* — any Boolean function can be implemented using only NAND gates (or only NOR gates). For example, to implement AND using NAND:

$$A \wedge B = \neg \neg (A \wedge B) = \neg (A \overline{\wedge} B) = (A \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} B)$$

Combinational Logic

Definition 3: A *combinational circuit* is a circuit where the output depends only on the current input values, without any memory or state.

Example (Half Adder): Adds two single bits:

• Sum: $S = A \oplus B$

• Carry: $C = A \wedge B$

Example (Full Adder): Adds two bits plus a carry-in:

• Sum: $S = A \oplus B \oplus C_{\text{in}}$

• Carry-out: $C_{\text{out}} = (A \land B) \lor (C_{\text{in}} \land (A \oplus B))$

Sequential Logic and Memory

Definition 4: A *sequential circuit* is a circuit where the output depends on both current inputs and previous state (memory).

Example (Flip-Flops):

- **SR Latch**: Set-Reset memory element.
- **D** Flip-Flop: Data storage triggered by clock edge.
- **JK Flip-Flop**: Eliminates forbidden state of SR latch.
- **T Flip-Flop**: Toggle flip-flop for counters.

Normal Forms

Definition 5: A *literal* is a Boolean variable or its negation (e.g., x, $\neg x$).

Definition 6 (DNF): A Boolean formula is in *disjunctive normal form (DNF)* if it is a disjunction (OR) of *terms* — conjunctions (AND) of literals.

$$\textit{Example: } f(x,y,z) = \underbrace{(x \land y \land \neg z)}_{\text{term}} \lor \underbrace{(\neg x \land z)}_{\text{term}} \lor \underbrace{(\neg y \land \neg z)}_{\text{term}} \lor \underbrace{x}_{\text{term}}$$

Definition 7 (CNF): A Boolean formula is in *conjunctive normal form (CNF)* if it is a conjunction (AND) of *clauses* — disjunctions (OR) of literals.

Example:
$$f(x, y, z) = \underbrace{(x \lor y \lor \neg z)}_{\text{clause}} \land \underbrace{(\neg x \lor z)}_{\text{clause}} \land \underbrace{(\neg y \lor \neg z)}_{\text{clause}} \land \underbrace{x}_{\text{clause}}$$

Minterms and Maxterms

Definition 8 (Minterm and Maxterm):

- A *minterm* is a product (AND) of literals where each variable appears exactly once.
- A *maxterm* is a sum (OR) of literals where each variable appears exactly once.

Note: A minterm (maxterm) is a function that evaluates to 1 (0, respectively) for exactly one combination of variable values.

Example: $f(x, y, z) = x\overline{y}z$ is a minterm, and $g(x, y, z) = x + \overline{y} + z$ is a maxterm for variables x, y, z.

- f(x, y, z) = 1 only on input 101, i.e., x = 1, y = 0, z = 1, corresponding to the minterm $x\overline{y}z$.
- g(x,y,z)=0 only on input 010, i.e., x=0,y=1,z=0, corresponding to the maxterm $\overline{x}+y+\overline{z}$.

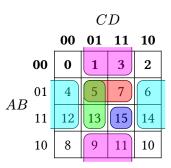
Canonical Forms

Definition 9 (SoP): Every Boolean function can be *uniquely* expressed as a *sum of minterms* (SoP, Sum of Products) corresponding to rows where the function evaluates to 1.

Definition 10 (PoS): Every Boolean function can be *uniquely* expressed as a *product of maxterms* (PoS, Product of Sums) corresponding to rows where the function evaluates to 0.

Karnaugh Maps

Definition 11: A *Karnaugh map* (K-map) is a graphical method for simplifying Boolean expressions by visually identifying adjacent minterms that can be combined.



Zhegalkin Polynomials

Definition 12: A *Zhegalkin polynomial* is a representation of a Boolean function as a polynomial over GF(2) using XOR (\oplus) and AND (\land) , often omitted) operations.

Theorem 3: Every Boolean function has a unique representation as a Zhegalkin polynomial:

$$f(x_1,...,x_n) = \bigoplus_{S \subseteq \{1,...,n\}} \left(a_S \prod_{i \in S} x_i\right)$$

where $a_S \in \{0, 1\}$ and \oplus denotes XOR.

Example: $f(x,y) = x \lor y = x \oplus y \oplus xy$

Binary Decision Diagrams (BDDs)

Definition 13 (BDD): A *binary decision diagram (BDD)* is a directed acyclic graph representing a Boolean function, where each non-terminal node represents a variable test and edges represent variable assignments.

Definition 14 (ROBDD): A *reduced* ordered binary decision diagram (ROBDD) is an ordered BDD with a fixed variable ordering where:

- No variable appears more than once on any path
- No two nodes have identical low and high successors
- No node has identical low and high successors

Theorem 4: Every Boolean function has a unique reduced ordered binary decision diagram (ROBDD) representation for a given variable ordering.

TODO

• ..