
Discrete Mathematics
Combinatorics — Spring 2025
Konstantin Chukharev

§1 Combinatorics

Introduction to Combinatorics

Definition 1 : Combinatorics is the branch of discrete mathematics that deals with counting, arranging,
and analyzing discrete structures.

Three basic problems of Combinatorics:
1. Existence: Is there at least one arrangement of a particular kind?
2. Counting: How many arrangements are there?
3. Optimization: Which one is best according to some criteria?

Discrete structures
• Graphs, sets, multisets, sequences, patterns, coverings, partitions…

Enumeration
• Permutations, combinations, inclusion/exclusion, generating functions, recurrence relations…

Algorithms and optimization
• Sorting, eulerian circuits, hamiltonian cycles, planarity testing, graph coloring, spanning trees, shortest

paths, network flows, bipartite matchings, chain partitions…

3 / 100

Discrete Structures
We investigate the building blocks of combinatorics:

• Sets and multisets
• Sequences and strings
• Arrangements
• Graphs, networks, trees
• Posets and lattices
• Partitions
• Patterns, coverings, designs, configurations
• Schedules, assignments, distributions

Used in data modeling, logic, cryptography, and the design of data structures.

4 / 100

Enumerative Combinatorics
We learn how to count without explicit listing:

• Permutations and combinations
• Inclusion–Exclusion Principle
• Set partitions, integer partitions, Stirling numbers, Catalan numbers
• Recurrence relations
• Generating functions

Used in probability theory, complexity theory, coding theory, computational biology.

5 / 100

Algorithmic and Optimization Methods
Combinatorics powers algorithm design and complexity analysis:

• Sorting
• Searching
• Eulerian paths and Hamiltonian cycles
• Planarity, colorings, cliques, coverings
• Spanning trees
• Shortest paths
• Network flows
• Bipartite matchings
• Dilworth’s theorem, chain and antichain partitions

Used in logistics, scheduling, routing, and complexity optimization.

6 / 100

§2 Basic Counting Principles

Basic Counting Rules
Product rule: If something can happen in 𝑛1 ways, and no matter how the first thing happens, a second
thing can happen in 𝑛2 ways, then the two things together can happen in 𝑛1 ⋅ 𝑛2 ways.

Sum rule: If one event can occur in 𝑛1 ways and a second event in 𝑛2 (different) ways, then there are
𝑛1 + 𝑛2 ways in which either the first event or the second event can occur (but not both).

8 / 100

Addition Principle

Definition 2 : We say a finite set 𝑆 is partitioned into parts 𝑆1, …, 𝑆𝑘 if the parts are pairwise disjoint
and their union is 𝑆. In other words, 𝑆𝑖 ∩ 𝑆𝑗 = ∅ for 𝑖 ≠ 𝑗 and 𝑆1 ∪ 𝑆2 ∪ … ∪ 𝑆𝑘 = 𝑆. In that case:

|𝑆| = |𝑆1| + |𝑆2| + … + |𝑆𝑘|

Example : Let 𝑆 be the set of students attending the combinatorics lecture. It can be partitioned into parts
𝑆1 and 𝑆2 where

𝑆1 = set of students that like easy examples.
𝑆2 = set of students that don‘t like easy examples.

If |𝑆1| = 22 and |𝑆2| = 8, then we can conclude |𝑆| = |𝑆1| + |𝑆2| = 30.

9 / 100

Multiplication Principle

Definition 3 : If 𝑆 is a finite set that is the product of 𝑆1, …, 𝑆𝑘, that is, 𝑆 = 𝑆1 × … × 𝑆𝑘, then

|𝑆| = |𝑆1| × … × |𝑆𝑘|

Example : TODO: example with car plates

10 / 100

Subtraction Principle

Definition 4 : Let 𝑆 be a subset of a finite set 𝑇 . We define the complement of 𝑆 as 𝑆 = 𝑇 \ 𝑆. Then

|𝑆| = |𝑇 | − |𝑆|

Example : If 𝑇 is the set of students studying at KIT and 𝑆 the set of students studying neither math nor
computer science. If we know |𝑇 | = 23905 and |𝑆| = 20178, then we can compute the number |𝑆| of
students studying either math or computer science:

|𝑆| = |𝑇 | − |𝑆| = 23905 − 20178 = 3727

11 / 100

Bijection Principle

Definition 5 : If 𝑆 and 𝑇 are sets, then

|𝑆| = |𝑇 | ⟺ there exists a bijection between 𝑆 and 𝑇

Example : Let 𝑆 be the set of students attending the combinatorics lecture and 𝑇 the set of homework
submissions (unique per student) for the first problem sheet. If the number of students and the number of
submissions coincide, then there is a bijection between students and submissions.

Note : The bijection principle works both for finite and infinite sets.

12 / 100

Pigeonhole Principle

Definition 6 : Let 𝑆1, …, 𝑆𝑘 be finite sets that are pairwise disjoint and |𝑆1| + |𝑆2| + … + |𝑆𝑘| = 𝑛.

∃𝑖 ∈ {1, …, 𝑘} : |𝑆𝑖| ≥ ⌊𝑛
𝑘

⌋ and ∃𝑗 ∈ {1, …, 𝑘} : |𝑆𝑗| ≤ ⌈𝑛
𝑘

⌉

Example : Assume there are 5 holes in the wall where pigeons nest. Say there is a set 𝑆𝑖 of pigeons nesting
in hole 𝑖. Assume there are 𝑛 = 17 pigeons in total. Then we know:
• There is some hole with at least 𝑑 = 4 pigeons.
• There is some hole with at most 𝑏 = 3 pigeons.

13 / 100

Double Counting
If we count the same quantity in two different ways, then this gives us a (perhaps non-trivial) identity.

Example (Handshaking Lemma) : Assume there are 𝑛 people at a party and everybody will shake hands
with everybody else. How many handshakes will occur? We count this number in two ways:

1. Every person shakes 𝑛 − 1 hands and there are 𝑛 people. However, two people are involved in a
handshake so if we just multiply 𝑛 ⋅ (𝑛 − 1), then every handshake is counted twice. The total number
of handshakes is therefore 𝑛⋅(𝑛−1)

2 .

2. We number the people from 1 to 𝑛. To avoid counting a handshake twice, we count for person 𝑖 only
the handshakes with persons of lower numbers. Then the total number of handshakes is:

∑
𝑛

𝑖=1
(𝑖 − 1) = ∑

{𝑛−1}

𝑖=0
𝑖 = ∑

𝑛−1

𝑖=1
𝑖

The identity we obtain is therefore: ∑
𝑛−1

𝑖=1
𝑖 = 𝑛 ⋅ (𝑛 − 1)

2

14 / 100

§3 Arrangements,
Permutations,
Combinations

Ordered Arrangements

Definition 7 : Denote by [𝑛] = {1, …, 𝑛} the set of natural numbers from 1 to 𝑛.

Hereinafter, let 𝑋 be a finite set.

Definition 8 : An ordered arrangement of 𝑛 elements of 𝑋 is a map 𝑠 : [𝑛] ⟶ 𝑋.

• Here, [𝑛] is the domain of 𝑠, and 𝑠(𝑖) is the image of 𝑖 ∈ [𝑛] under 𝑠.
• The set {𝑥 ∈ 𝑋 | 𝑠(𝑖) = 𝑥 for some 𝑖 ∈ [𝑛]} is the range of 𝑠.

Other common names for ordered arrangements are:
• string (or word), e.g. “Banana”
• sequence, e.g. “0815422372”
• tuple, e.g. (3, 5, 2, 5, 8)

Example : 𝑖 1 2 3 4 5 6 7
𝑠(𝑖) 🦀 🥖 🥖 🫙 🥖 🦀 🫙

16 / 100

Permutations

Definition 9 : A permutation of 𝑋 is a bijective map 𝜋 : [𝑛] ⟶ 𝑋.

Usually, 𝑋 = [𝑛], and the set of all permutations of [𝑛] is denoted by 𝑆𝑛.

Example : 𝑖 1 2 3 4 5 6 7
𝜋(𝑖) 2 7 1 3 5 4 6

Definition 10 : 𝑘-permutation of 𝑋 is an ordered arrangement of 𝑘 distinct elements of 𝑋, that is, an
injective map 𝜋 : [𝑘] ⟶ 𝑋.

The set of all 𝑘-permutations of 𝑋 = [𝑛] is denoted by 𝑃(𝑛, 𝑘). In particular, 𝑆𝑛 = 𝑃(𝑛, 𝑛).

TODO: circular permutations

17 / 100

Counting Permutations

Theorem 1 : For any natural numbers 0 ≤ 𝑘 ≤ 𝑛, we have

|𝑃 (𝑛, 𝑘)| = 𝑛 ⋅ (𝑛 − 1) ⋅ … ⋅ (𝑛 − 𝑘 + 1) = 𝑛!
(𝑛 − 𝑘)!

Proof : A permutation is an injective map 𝜋 : [𝑘] ⟶ [𝑛]. We count the number of ways to pick such a
map, picking the images one after the other. There are 𝑛 ways to choose 𝜋(1). Given a value for 𝜋(1), there
are (𝑛 − 1) ways to choose 𝜋(2) (since we may not choose 𝜋(1) again). Continuing like this, there are
(𝑛 − 𝑖 + 1) ways to pick 𝜋(𝑖), and the last value we pick is 𝜋(𝑘) with (𝑛 − 𝑘 + 1) possibilities.

Every 𝑘-permutation can be constructed like this in exactly one way. The total number of 𝑘-permutations is
therefore given as the product:

|𝑃 (𝑛, 𝑘)| = 𝑛 ⋅ (𝑛 − 1) ⋅ … ⋅ (𝑛 − 𝑘 + 1) = 𝑛!
(𝑛 − 𝑘)!

□
18 / 100

Counting Circular Permutations

Theorem 2 : For any natural numbers 0 ≤ 𝑘 ≤ 𝑛, we have

|𝑃𝑐(𝑛, 𝑘)| = 𝑛!
𝑘 ⋅ (𝑛 − 𝑘)!

Proof : We doubly count 𝑃(𝑛, 𝑘):

1. |𝑃 (𝑛, 𝑘)| = 𝑛!
(𝑛−𝑘)! which we proved before.

2. |𝑃 (𝑛, 𝑘)| = |𝑃𝑐(𝑛, 𝑘)| ⋅ 𝑘 because every equivalence class in 𝑃𝑐(𝑛, 𝑘) contains 𝑘 permutations from
𝑃(𝑛, 𝑘) since there are 𝑘 ways to rotate a 𝑘-permutation.

From this we get 𝑛!
(𝑛−𝑘)! = |𝑃𝑐(𝑛, 𝑘)| ⋅ 𝑘 which implies |𝑃𝑐(𝑛, 𝑘)| = 𝑛!

𝑘⋅(𝑛−𝑘)! . □

19 / 100

Unordered Arrangements

Definition 11 : An unordered arrangement of 𝑘 elements of 𝑋 is a multiset 𝑆 = ⟨𝑋, 𝑟⟩ of size 𝑘.

In a multiset, 𝑋 is the set of types, and for each type 𝑥 ∈ 𝑋, 𝑟𝑥 is its repetition number.

Example : Let 𝑋 = {👒,🦭,🐈,🪗,🌵}.
• An unordered arrangement of 7 elements could be 𝑆 = {👒,👒,🦭,🐈,🐈,🐈,🌵}∗.
• The same multiset could be written as 𝑆 = {2👒, 1🦭, 3🐈, 0🪗, 1🌵}.

20 / 100

Subsets
The most important special case of unordered arrangements is where all repetitions are 1, i.e., 𝑟𝑥 = 1 for
all 𝑥 ∈ 𝑋. Then 𝑆 is simply a subset of 𝑋, denoted 𝑆 ⊂ 𝑋.

Definition 12 : A 𝑘-combination of 𝑋 is an unordered arrangement of 𝑘 distinct elements of 𝑋.

Note : The more standard term is subset. The term “combination” is only used to emphasize the
selection process.

The set of all 𝑘-subsets of 𝑋 is denoted (𝑋
𝑘) = {𝐴 ⊆ 𝑋 | |𝐴| = 𝑘}. If |𝑋| = 𝑛, then

(𝑛
𝑘

) ≔ |(𝑋
𝑘

)|

Example : The set of edges in a simple undirected graph consists of 2-subsets of its vertices: 𝐸 ⊆ (𝑉
2).

21 / 100

Counting 𝑘-Combinations

Theorem 3 : For 0 ≤ 𝑘 ≤ 𝑛, we have

(𝑛
𝑘

) = 𝑛!
𝑘! ⋅ (𝑛 − 𝑘)!

Proof : |𝑃 (𝑛, 𝑘)| = 𝑛!
(𝑛 − 𝑘)!

= (𝑛
𝑘

) ⋅ 𝑘! □

22 / 100

§4 Multisets

Multiset

Definition 13 : A multiset is a modification of the concept of a set that allows for repetitions of its
elements. Formally, it is denoted as a pair 𝑀 = ⟨𝑋, 𝑟⟩, where 𝑋 is the groundset (the set of types) and
𝑟 : 𝑋 ⟶ ℕ0 is the multiplicity function.

Example : When the multiset is defined by enumeration, it is advisable to use the notation with the star:

𝑀 = {𝑎, 𝑏, 𝑎, 𝑎, 𝑏}∗ = {3 ⋅ 𝑎, 2 ⋅ 𝑏} 𝑋 = {𝑎, 𝑏} 𝑟𝑎 = 3, 𝑟𝑏 = 2

Example : Prime factorization of a natural number 𝑛 is a multiset, e.g. 120 = 23 ⋅ 31 ⋅ 51.

24 / 100

𝑘-Combinations of a Multiset

Definition 14 : Let 𝑋 be a finite set of types, and let 𝑀 = ⟨𝑋, 𝑟⟩ be a finite multiset with repetition
numbers 𝑟1, …, 𝑟|𝑋|. A 𝑘-combination of 𝑀 is a multiset 𝑆 = ⟨𝑋, 𝑠⟩ with types in 𝑋 and repetition
numbers 𝑠1, …, 𝑠|𝑋| such that 𝑠𝑖 ≤ 𝑟𝑖 for all 1 ≤ 𝑖 ≤ |𝑋|, and ∑|𝑋|

𝑖=1 𝑠𝑖 = 𝑘.

Example : Consider 𝑀 = {2🦫, 1🥤, 3🍉, 1💎}.
• 𝑇 = {1🦫, 2🍉} is a 3-combination of 𝑀 .
• 𝑇 ′ = {3💎} is not.

Counting 𝑘-combinations of a multiset is not as simple as it might seem…

25 / 100

𝑘-Permutations of a Multiset

Definition 15 : Let 𝑀 be a finite multiset with set of types 𝑋. A 𝑘-permutation of 𝑀 is an ordered
arrangement of 𝑘 elements of 𝑀 where different orderings of elements of the same type are not
distinguished. This is an ordered multiset with types in 𝑋 and repetition numbers 𝑠1, …, 𝑠|𝑋| such that
𝑠𝑖 ≤ 𝑟𝑖 for all 1 ≤ 𝑖 ≤ |𝑋|, and ∑|𝑋|

𝑖=1 𝑠𝑖 = 𝑘.

Note : There might be several elements of the same type compared to a permutation of a set (where each
repetition number equals 1).

Example : Let 𝑀 = {2🦫, 1🥤, 3🍉, 1💎}, then 𝑇 = (💎,🍉,🍉,🦫) is a 4-permutation of multiset 𝑀 .

26 / 100

Binomial Theorem

Theorem 4 : The expansion of any non-negative integer power 𝑛 of the binomial (𝑥 + 𝑦) is a sum

(𝑥 + 𝑦)𝑛 = ∑
𝑛

𝑘=0
(𝑛

𝑘
) ⋅ 𝑥𝑘 ⋅ 𝑦𝑛−𝑘

where each (𝑛
𝑘) is a positive integer known as a binomial coefficient, defined as

(𝑛
𝑘

) = 𝑛!
𝑘! ⋅ (𝑛 − 𝑘)!

= 𝑛(𝑛 − 1)(𝑛 − 2)…(𝑛 − 𝑘 + 1)
𝑘(𝑘 − 1)(𝑘 − 2)… ⋅ 2 ⋅ 1

27 / 100

Multinomial Theorem

Theorem 5 : The generalization of the binomial theorem:

(𝑥1 + … + 𝑥𝑟)
𝑛 = ∑

𝑛

0≤𝑘1,…,𝑘𝑟≤𝑛
𝑘1+…+𝑘𝑟=𝑛

(𝑛
𝑘1, …, 𝑘𝑟

) ⋅ 𝑥𝑘1
1 ⋅ … ⋅ 𝑥𝑘𝑟𝑟

Multinomial coefficients are defined as

(𝑛
𝑘1, …, 𝑘𝑟

) = 𝑛!
𝑘1! ⋅ … ⋅ 𝑘𝑟!

Note : Binomial coefficients are special cases of multinomial coefficients (𝑟 = 2):

(𝑛
𝑘

) = (𝑛
𝑘1, 𝑘2

) = (𝑛
𝑘, 𝑛 − 𝑘

) = 𝑛!
𝑘! ⋅ (𝑛 − 𝑘)!

Proof : TODO □

28 / 100

Permutations of a Multiset

Theorem 6 : Let 𝑆 be a finite multiset with 𝑘 different types and repetition numbers 𝑟1, …, 𝑟𝑘. Let the
size of 𝑆 be 𝑛 = 𝑟1 + … + 𝑟𝑘. Then the number of 𝑛-permutations of 𝑆 equals

(𝑛
𝑟1, …, 𝑟𝑘

)

Proof : In an 𝑛-permutation there are 𝑛 positions that need to be assigned a type.

First, choose the 𝑟1 positions for the first type, there are (𝑛
𝑟1

) ways to do so. Then, assign 𝑟2 positions for
the second type, out of the (𝑛 − 𝑟1) positions that are still available, there are (𝑛−𝑟1

𝑟2
) ways to do so.

Continue for all 𝑘 types. The total number of choices will be:

(𝑛
𝑟1

) ⋅ (𝑛 − 𝑟1
𝑟2

) ⋅ … ⋅ (𝑛 − 𝑟1 − 𝑟2 − … − 𝑟𝑘−1
𝑟𝑘

) = (𝑛
𝑟1, …, 𝑟𝑘

)

□

29 / 100

𝑘-Combinations of an Infinite Multiset
Example : Suppose you have a sufficiently large amount of each type of fruit (🍌, 🍎, 🍐) in the
supermarket, and you want to buy two fruits. How many choices do you have?

There are exactly six combinations: {🍌,🍌}, {🍌,🍎}, {🍌,🍐}, {🍎,🍎}, {🍎,🍐}, {🍐,🍐}.

Note that your selection is not ordered, so {🍐,🍎} and {🍎,🍐} are considered the same choice.

30 / 100

𝑘-Combinations of an Infinite Multiset [2]

Theorem 7 : Let 𝑘, 𝑠 ∈ ℕ and let 𝑆 be a multiset with 𝑠 types and large repetition numbers (each
𝑟1, …, 𝑟𝑠 is at least 𝑘), then the number of 𝑘-combinations of 𝑆 equals

(𝑘 + 𝑠 − 1
𝑘

) = (𝑘 + 𝑠 − 1
𝑠 − 1

)

Proof : Let 𝑆 = {∞🍌, ∞🍎, ∞🍐}, so 𝑠 = 3.
• Suppose 𝑘 = 5.
• Consider a 5-combination of 𝑆: {🍌,🍎,🍌,🍐,🍐}.
• Reorder and group: {🍌🍌 |🍎 |🍐🍐}.
• Convert to dots and bars: • • | • | • •
• Represent as a multiset: 𝑀 = {𝑘 ⋅ •, (𝑠 − 1) ⋅ | �}
• Observe: each permutation of 𝑘 dots and (𝑠 − 1) bars corresponds to a 𝑘-combination of 𝑆.
• Permute the 2-type multiset: (𝑘+𝑠−1

𝑘,𝑠−1) ways, by Theorem 5.

□

31 / 100

§5 Compositions

Weak Compositions

Definition 16 : A weak composition of a non-negative integer 𝑘 ≥ 0 into 𝑠 parts is a solution to the
equation 𝑏1 + … + 𝑏𝑠 = 𝑘, where each 𝑏𝑖 ≥ 0.

Example : Let 𝑘 = 5, 𝑠 = 3. Possible non-negative integer solutions for 𝑏1 + 𝑏2 + 𝑏3 = 5 are:
• (𝑏1, 𝑏2, 𝑏3) = (1, 1, 3)
• (𝑏1, 𝑏2, 𝑏3) = (1, 3, 1)
• (𝑏1, 𝑏2, 𝑏3) = (2, 0, 3)
• (𝑏1, 𝑏2, 𝑏3) = (0, 5, 0)
• … (total 21 solutions)

Note : If 𝑀 is a multiset over groundset {1, …, 𝑠} with all multiplicities infinite (𝑟𝑖 = ∞), then for 𝑘 ≥ 0,
the number of sub-multisets of 𝑀 of size 𝑘 is exactly the number of weak compositions of 𝑘 into 𝑠 parts.

33 / 100

Counting Weak Compositions

Theorem 8 : There are (𝑘+𝑠−1
𝑘,𝑠−1) weak compositions of 𝑘 > 0 into 𝑠 parts.

Proof : Observe that 𝑘 =
𝑘 ones

⏞⏞⏞⏞⏞⏞⏞⏞⏞1 + 1⏟
𝑏1

+ …⏟
𝑏𝑖

+ 1 + 1⏟
𝑏𝑠

.

Use the stars-and-bars method to count the number of 𝑠 groups composed of 𝑘 “ones”. □

Example : Let 𝑘 = 3. There are (3+3−1
3,3−1) = (5

3) = (5
2) = 10 ways to decompose 𝑘 = 3 into 𝑠 = 3 parts:

𝑘 = 3 =
= 0 + 1 + 2 = 0 + 2 + 1
= 1 + 0 + 2 = 1 + 2 + 0 = 1 + 1 + 1
= 2 + 0 + 1 = 2 + 1 + 0
= 3 + 0 + 0 = 0 + 3 + 0 = 0 + 0 + 3

34 / 100

Compositions

Definition 17 : A composition of a positive integer 𝑘 ≥ 1 into 𝑠 positive parts is a solution to the
equation 𝑏1 + … + 𝑏𝑠 = 𝑘, where each 𝑏𝑖 > 0.

Theorem 9 : There are (𝑘−1
𝑠−1) compositions of 𝑘 > 0 into 𝑠 positive parts.

Theorem 10 : The total number of compositions of 𝑘 > 0 into some number of positive parts is

∑
𝑘

𝑠=1
(𝑘 − 1

𝑠 − 1
) = 2𝑘−1

35 / 100

Parallel Summation Identity
Q: How many integer solutions are there to the inequality 𝑏1 + … + 𝑏𝑠 ≤ 𝑘, where each 𝑏𝑖 ≥ 0?

Theorem 11 : ∑
𝑘

𝑚=0
(𝑚 + 𝑠 − 1

𝑚
) = (𝑘 + 𝑠

𝑘
)

Proof (hint) : Introduce a “dummy” variable 𝑏𝑠+1 to take up the slack between 𝑏1 + … + 𝑏𝑠 and 𝑘.
Construct a bijection with the solutions to 𝑏1 + … + 𝑏𝑠 + 𝑏𝑠+1 = 𝑘, where 𝑏𝑖 ≥ 0. □

36 / 100

§6 Set Partitions

Set Partitions

Definition 18 : A partition of a set 𝑋 is a set of non-empty subsets of 𝑋 such that every element of 𝑋
belongs to exactly one of these subsets.

Equivalently, a family of sets 𝑃 is a partition of 𝑋 iff:
1. The family 𝑃 does not contain the empty set: ∅ ∉ 𝑃 .
2. The union of 𝑃 is 𝑋, that is, ⋃𝐴∈𝑃 𝐴 = 𝑋. The sets in 𝑃 are said to cover 𝑋.
3. The intersection of any two distinct sets in 𝑃 is empty: ∀𝐴, 𝐵 ∈ 𝑃 . (𝐴 ≠ 𝐵) → (𝐴 ∩ 𝐵 = ∅).

The sets in 𝑃 are said to be pairwise disjoint or mutually exclusive.

The sets in 𝑃 are called blocks, parts, or cells, of the partition.

The block in 𝑃 containing an element 𝑥 ∈ 𝑋 is denoted by [𝑥].

38 / 100

Examples of Set Partitions
Example : The empty set 𝑋 = ∅ has exactly one partition, 𝑃 = ∅.

Example : Any singleton set 𝑋 = {𝑥} has exactly one partition, 𝑃 = {{𝑥}}.

Example : For any non-empty proper subset 𝐴 ⊂ 𝑈 , the set 𝐴 and its complement form a partition of 𝑈 ,
namely 𝑃 = {𝐴, 𝑈 − 𝐴}.

Example : The set 𝑋 = {1, 2, 3} has five partitions:
1. {{1}, {2}, {3}} or 1 | 2 | 3
2. {{1}, {2, 3}} or 1 | 2 3
3. {{1, 2}, {3}} or 1 2 | 3
4. {{1, 3}, {2}} or 1 3 | 2
5. {{1, 2, 3}} or 1 2 3

Example : The following are not partitions of {1, 2, 3}:
• {{}, {1, 3}, {2}}, because it contains the empty set.
• {{1, 2}, {2, 3}}, because the element 2 is contained in more than one block.
• {{1}, {3}}, because no block contains the element 3.

39 / 100

Counting Set Partitions

Definition 19 : The number of partitions of a set 𝑋 (of size 𝑛 = |𝑋|) into 𝑘 non-empty blocks
(“unlabeled subsets”) is called a Stirling number of the second kind and denoted 𝑆(𝑛, 𝑘) or {𝑛

𝑘}.

Example : Let 𝑋 = {1, 2, 3, 4}, 𝑘 = 2. There are 7 possible partitions:

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

Theorem 12 : Let {𝑛
0} = 0 for 𝑛 ≥ 1, {0

𝑘} = 0 for 𝑘 ≥ 1, and {0
0} = 1. For 𝑛, 𝑘 ≥ 1, we have:

{𝑛
𝑘} = {𝑛 − 1

𝑘 − 1} + 𝑘 ⋅ {𝑛 − 1
𝑘 }

Proof (informal) : TODO □

40 / 100

Bell Numbers

Definition 20 : The total number of partitions of a set 𝑋 of size 𝑛 = |𝑋| (into an arbitrary number of
non-empty blocks) is called a Bell number and denoted 𝐵𝑛.

𝐵𝑛 = ∑
𝑛

𝑘=0
{𝑛

𝑘}

Note : Consider the special case of 𝑛 = 0. There is exactly one partition of ∅ into non-empty parts:
∅ = ⋃𝐴∈ ∅

𝐴 ∈ ∅. Every 𝐴 ∈ ∅ is non-empty, since no such 𝐴 exists. Thus, we have 𝐵0 = 𝑆(0, 0) = 1.

41 / 100

Bell Numbers [2]

Theorem 13 : For 𝑛 ≥ 1, we have the recursive identity for Bell numbers:

𝐵𝑛 = ∑
𝑛−1

𝑘=0
(𝑛 − 1

𝑘
)𝐵𝑘

Proof : Every partition of [𝑛] has one part that contains the number 𝑛. In addition to 𝑛, this part also
contains 𝑘 other numbers (for some 0 ≤ 𝑘 ≤ 𝑛 − 1). The remaining 𝑛 − 1 − 𝑘 elements are partitioned
arbitrarily. From this correspondence, we obtain the desired identity:

𝐵𝑛 = ∑
𝑛−1

𝑘=0
(𝑛 − 1

𝑘
)𝐵𝑛−1−𝑘 = ∑

𝑛−1

𝑘=0
(𝑛 − 1

𝑛 − 1 − 𝑘
)𝐵𝑛−1−𝑘 = ∑

𝑛−1

𝑘=0
(𝑛 − 1

𝑘
)𝐵𝑘

□

42 / 100

§7 Integer Partitions

Integer Partitions

Definition 21 : An integer partition of a positive integer 𝑛 ≥ 1 into 𝑘 positive parts is a solution to the
equation 𝑛 = 𝑎1 + … + 𝑎𝑘, where 𝑎1 ≥ 𝑎2 ≥ … ≥ 𝑎𝑘 ≥ 1.

• The number of integer partitions of 𝑛 into 𝑘 positive non-decreasing parts is denoted 𝑝𝑘(𝑛) and
defined recursively:

𝑝𝑘(𝑛) =

{{
{{
{{
{0 if 𝑘 > 𝑛

0 if 𝑛 ≥ 1 and 𝑘 = 0
1 if 𝑛 = 𝑘 = 0
𝑝𝑘(𝑛 − 𝑘) + 𝑝𝑘−1(𝑛 − 1) if 1 ≤ 𝑘 ≤ 𝑛

• The number of partitions of 𝑛 (into an arbitrary number of parts) is the partition function 𝑝(𝑛):

𝑝(𝑛) = ∑
𝑛

𝑘=0
𝑝𝑘(𝑛)

44 / 100

Ferrer Diagrams and Yound Tableaux
Example : Consider an integer partition: 14 = 6 + 4 + 3 + 1.

Norman Ferrer Alfred Young

Ferrer Diagram Young Tableaux

45 / 100

https://en.wikipedia.org/wiki/Norman_Macleod_Ferrers
https://en.wikipedia.org/wiki/Alfred_Young_(mathematician)

§8 Inclusion–Exclusion

The Inclusion–Exclusion Principle
TODO: small example of PIE with 2 or 3 sets

47 / 100

Principle of Inclusion–Exclusion (PIE)

Theorem 14 : Let 𝑋 be a finite set and 𝑃1, …, 𝑃𝑚 properties.
• Define 𝑋𝑖 = {𝑥 ∈ 𝑋 | 𝑥 has 𝑃𝑖}, i.e. the set of all elements from 𝑋 having a property 𝑃𝑖.
• Define for 𝑆 ⊆ [𝑚] the set 𝑁(𝑆) = {𝑥 ∈ 𝑋 | ∀𝑖 ∈ 𝑆 : 𝑥 has 𝑃𝑖}. Observe: 𝑁(𝑆) = ⋂𝑖∈𝑆 𝑋𝑖.

The number of elements of 𝑋 that satisfy none of the properties 𝑃1, …, 𝑃𝑚 is given by

|𝑋 \ (𝑋1 ∪ … ∪ 𝑋𝑚)| = ∑
𝑆⊆[𝑚]

(−1)|𝑆||𝑁(𝑆)| (1)

Proof : Consider any 𝑥 ∈ 𝑋. If 𝑥 ∈ 𝑋 has none of the properties, then 𝑥 ∈ 𝑁(∅) and 𝑥 ∉ 𝑁(𝑆) for any
other 𝑆 ≠ ∅. Hence 𝑥 contributes 1 to the sum (1).

If 𝑥 ∈ 𝑋 has exactly 𝑘 ≥ 1 of the properties, call this set 𝑇 ∈ ([𝑚]
𝑘). Then 𝑥 ∈ 𝑁(𝑆) iff 𝑆 ⊆ 𝑇 .

The contribution of 𝑥 to the sum (1) is ∑𝑆⊆𝑇 (−1)|𝑆| = ∑𝑘
𝑖=0(

𝑘
𝑖)(−1)𝑖 = 0, i.e. zero. □

Note : In the last step, we used that for any 𝑦 ∈ ℝ we have (1 − 𝑦)𝑘 = ∑𝑘
𝑖=0(

𝑘
𝑖)(−𝑦)𝑖 which implies

(for 𝑦 = 1) that 0 = ∑𝑘
𝑖=0(

𝑘
𝑖)(−1)𝑖.

48 / 100

Very Useful Corollary of PIE

Corollary 14.1 : 🙀

| ⋃
𝑖∈[𝑚]

𝑋𝑖| = |𝑋| − ∑
𝑆⊆[𝑚]

(−1)|𝑆||𝑁(𝑆)| = ∑
∅ ≠𝑆⊆[𝑚]

(−1)|𝑆|−1|𝑁(𝑆)|

49 / 100

Applications of PIE
Let’s state the principle of inclusion-exclusion using a rigid pattern:

1. Define “bad” properties.

Identify the things to count as the elements of some universe 𝑋 except for the whose having at least one
of the “bad” properties 𝑃1, …, 𝑃𝑚. In other words, we want to count 𝑋 \ (𝑋1 ∪ … ∪ 𝑋𝑚).

2. Count 𝑁(𝑆).

For each 𝑆 ⊆ [𝑚], determine 𝑁(𝑆), the number of elements of 𝑋 having all bad properties 𝑃𝑖 for 𝑖 ∈ 𝑆.

3. Apply PIE.

Use Theorem 14 to obtain a closed formula for |𝑋 \ (𝑋1 ∪ … ∪ 𝑋𝑚)|.

50 / 100

Counting Surjections via PIE

Theorem 15 : The number of surjections from [𝑘] to [𝑛] is given by

|{𝑓 : [𝑘] ⟶
surj.

[𝑛]}| = ∑
𝑛

𝑖=0
(−1)𝑖(𝑛

𝑖
)(𝑛 − 𝑖)𝑘

Proof : Let 𝑋 be the set of all maps from [𝑘] to [𝑛].

1. Define bad properties: Define the “bad” property 𝑃𝑖 for 𝑖 ∈ [𝑛] as “𝑖 is not in the image of 𝑓”, i.e.

𝑓 : [𝑘] ⟶ [𝑛] has property 𝑃𝑖 ↔ ∀𝑗 ∈ [𝑘] : 𝑓(𝑗) ≠ 𝑖

The surjective functions are exactly those functions that do not have any of the “bad” properties.

2. Count 𝑁(𝑆): We claim 𝑁(𝑆) = (𝑛 − |𝑆|)𝑘 for any 𝑆 ⊆ [𝑛]. To see this, observe that 𝑓 has all properties
with indices from 𝑆 if and only if 𝑓(𝑖) ∉ 𝑆 for all 𝑖 ∈ [𝑘]. In other words, 𝑓 must be a function
from [𝑘] to [𝑛] \ 𝑆, and there are (𝑛 − |𝑆|)𝑘 of those.

51 / 100

Counting Surjections via PIE [2]
3. Apply PIE: Using Theorem 14, the number of surjections from [𝑘] to [𝑛] is

|𝑋 \ (𝑋1 ∪ … ∪ 𝑋𝑛)| =PIE ∑
𝑆⊆[𝑛]

(−1)|𝑆||𝑁(𝑆)|

= ∑
𝑆⊆[𝑛]

(−1)|𝑆|(𝑛 − |𝑆|)𝑘

= ∑
𝑛

𝑖=0
(−1)𝑖(𝑛

𝑖
)(𝑛 − 𝑖)𝑘

In the last step, we used that (−1)|𝑆|(𝑛 − |𝑆|)𝑘 only depends on the size of 𝑆, and there are (𝑛
𝑖) sets

𝑆 ⊆ [𝑛] of size 𝑖.

□

52 / 100

More Useful Corollaries

Corollary 15.1 : Consider the case 𝑛 = 𝑘. A function from [𝑛] to [𝑛] is a surjection iff it is a bijection.
Since there are 𝑛! bijections on [𝑛] (namely, all permutations), we have the following identity:

𝑛! = ∑
𝑛

𝑖=0
(−1)𝑖(𝑛

𝑖
)(𝑛 − 𝑖)𝑛

Corollary 15.2 : A surjection from [𝑘] to [𝑛] can be seen as a partition of [𝑘] into 𝑛 non-empty
distinguishable (labeled) parts (the map assigns a part to each 𝑖 ∈ [𝑘]).

Since the partition of [𝑘] into 𝑛 non-empty indistinguishable parts is denoted 𝑠II
𝑛(𝑘), and there are 𝑛!

ways to assign labels to 𝑛 parts, we obtain that the number of surjections is equal to 𝑛!𝑠II
𝑛(𝑘):

𝑛!𝑠II
𝑛(𝑘) = ∑

𝑛

𝑖=0
(−1)𝑖(𝑛

𝑖
)(𝑛 − 𝑖)𝑘

53 / 100

Derangements

Theorem 16 : The derangements 𝐷𝑛 on 𝑛 elements are permutations of [𝑛] without fixed points.

The number of derangements is given by

|𝐷𝑛| = ∑
𝑛

𝑖=0
(−1)𝑖(𝑛

𝑖
)(𝑛 − 𝑖)!

Proof : Let 𝑋 be the set of all permutations of [𝑛].

1. Define the “bad” property 𝑃𝑖 to mean “𝜋 has a fixpoint 𝑖” (𝑖 ∈ [𝑛]):

𝜋 ∈ 𝑋 has property 𝑃𝑖 ↔ 𝜋(𝑖) = 𝑖

2. We claim 𝑁(𝑆) = (𝑛 − |𝑆|)! for any 𝑆 ⊆ [𝑛].

Indeed, 𝜋 ∈ 𝑋 has all properties with indices from 𝑆 if and only if all 𝑖 ∈ 𝑆 are fixed points of 𝜋. On the
other elements, i.e. on [𝑛] \ 𝑆, 𝜋 may be an arbitrary bijection, so there are (𝑛 − |𝑆|)! choices for 𝜋.

54 / 100

Derangements [2]
3. Using Theorem 14, the number of derangements is given by

|𝑋 \ (𝑋1 ∪ … ∪ 𝑋𝑛)| =PIE ∑
𝑆⊆[𝑛]

(−1)|𝑆||𝑁(𝑆)|

= ∑
𝑆⊆[𝑛]

(−1)|𝑆|(𝑛 − |𝑆|)!

= ∑
𝑛

𝑖=0
(−1)𝑖(𝑛

𝑖
)(𝑛 − 𝑖)!

In the last step, we used that (−1)|𝑆|(𝑛 − |𝑆|)! only depends on the size of 𝑆, and there are (𝑛
𝑖) sets

𝑆 ⊆ [𝑛] of size 𝑖.

□

55 / 100

§9 Generating Functions

Generating Functions
A generating function is a device somewhat similar to a bag. Instead of carrying many little objects
detachedly, which could be embarrassing, we put them all in a bag, and then we have only one object to
carry, the bag.

— George Pólya, Mathematics and Plausible Reasoning [1]

A generating function is a clothesline on which we hang up a sequence of numbers for display.

— Herbert Wilf, generatingfunctionology [2]

Abraham
de Moivre

George Pólya Herbert Wilf

57 / 100

Ordinary Generating Functions

Definition 22 : An ordinary generating function (OGF) of a sequence 𝑎𝑛 is a power series

𝐺(𝑎𝑛; 𝑥) = ∑
∞

𝑛=0
𝑎𝑛𝑥𝑛

Example : The sequence 𝑎𝑛 = (𝑎0, 𝑎1, 𝑎2, …) is generated by the OGF 𝐺(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + …

Example : 𝐺(𝑥) = 3 + 8𝑥2 + 𝑥3 + 1
7𝑥5 + 100𝑥6 + … generates the sequence (3, 0, 8, 1, 0, 1

7 , 100, 0, …)

Example : Consider a long division of 1 by (1 − 𝑥), the result is an infinite power series

1
1 − 𝑥

= 1 + 𝑥1 + 𝑥2 + 𝑥3 + … = ∑
∞

𝑛=0
𝑥𝑛

Note that all coefficients are 1. Thus, the generating function of (1, 1, 1, …) is 𝐺(𝑥) = ∑∞
𝑛=0 𝑥𝑛 = 1

1−𝑥 .

58 / 100

More Examples of Generating Functions
Another proof that (1, 1, 1, …) is generated by 𝐺(𝑥) = 1 + 𝑥 + 𝑥2 + 𝑥3 + … = ∑∞

𝑛=0 𝑥𝑛 = 1
1−𝑥 = 𝑆:

𝑆 = 1 + 𝑥 + 𝑥2 + 𝑥3 + …
𝑥 ⋅ 𝑆 = 𝑥 + 𝑥2 + 𝑥3 + …

𝑆 − 𝑥 ⋅ 𝑆 = 1

Thus, 𝑆 = 1
1 − 𝑥

59 / 100

More Examples of Generating Functions [2]
1

1 − 𝑥
= ∑

∞

𝑛=0
𝑥𝑛 = 1 + 𝑥 + 𝑥2 + 𝑥3 + … generates (1, 1, 1, …) (constant 1)

2
1 − 𝑥

= ∑
∞

𝑛=0
2𝑥𝑛 = 2 + 2𝑥 + 2𝑥2 + 2𝑥3 + … generates (2, 2, 2, …) (constant 2)

𝑥
1 − 𝑥

= ∑
∞

𝑛=1
𝑥𝑛 = 𝑥 + 𝑥2 + 𝑥3 + … generates (0, 1, 1, 1, …) (right shift)

1
1 + 𝑥

= ∑
∞

𝑛=0
(−1)𝑛𝑥𝑛 = 0 + 1 − 𝑥 + 𝑥2 − 𝑥3 + … generates (1, −1, 1, …) (sign-alternating 1's)

1
1 − 3𝑥

= ∑
∞

𝑛=0
3𝑛𝑥𝑛 = 1 + 3𝑥 + 9𝑥2 + 27𝑥3 + … generates (1, 3, 9, …) (powers of 3)

1
1 − 𝑥2 = ∑

∞

𝑛=0
𝑥2𝑛 = 1 + 𝑥2 + 𝑥4 + 𝑥6 + … generates (1, 0, 1, 0, …) (regular gaps)

1
(1 − 𝑥)2 = ∑

∞

𝑛=0
(𝑛 + 1)𝑥𝑛 = 1 + 2𝑥 + 3𝑥2 + 4𝑥3 + … generates (1, 2, 3, 4, …) (natural numbers)

60 / 100

More Examples of Generating Functions [3]
1 − 𝑥𝑛+1

1 − 𝑥
= 1

1 − 𝑥
− 𝑥𝑛+1

1 − 𝑥
=

≜ (1, 1, 1, …) − (0, 0, …, 0⏟
𝑛+1 zeros

, 1, 1, …) =

= (1, 1, …, 1⏟
𝑛+1 ones

, 0, 0, …) =

≜ 1 + 𝑥 + 𝑥2 + … + 𝑥𝑛

61 / 100

Exercises
Example : Find GF for odd numbers: (1, 3, 5, …).

Example : Find GF for (1, 3, 7, 15, 31, 63), which satisfies 𝑎𝑛 = 3𝑎𝑛−1 − 2𝑎𝑛−2 with 𝑎0 = 1, 𝑎1 = 3.

62 / 100

Solving Combinatorial Problems via Generating Functions
Example : Find the number of integer solutions to 𝑦1 + 𝑦2 + 𝑦3 = 12 with 0 ≤ 𝑥𝑖 ≤ 6.
• Possible values for 𝑦1 are 0 ≤ 𝑦1 ≤ 6.

‣ There is a single way to select 𝑦1 = 0. The same for other values among 1, …, 6.
‣ There are no ways to select any value of 𝑦1 higher than 6.
‣ The number of ways to select 𝑦1 to be equal to 𝑛 forms a sequence (1, 1, 1, 1, 1, 1, 1, 0, …).
‣ Write this sequence as a polynomial 𝑥0 + 𝑥1 + … + 𝑥6.
‣ Do the same for 𝑦2 and 𝑦3 (in isolation!).

• Since all combinations of 𝑦1, 𝑦2 and 𝑦3 are valid non-conflicting solutions, we can multiply those
polynomials and obtain the generating function 𝐺(𝑥) = (1 + 𝑥 + 𝑥2 + … + 𝑥6)3.
‣ For each 𝑛, the coefficient of 𝑥𝑛 in 𝐺(𝑥) is the number of integer solutions to 𝑥1 + 𝑥2 + 𝑥3 = 𝑛.
‣ In particular, we are interested in the coefficient of 𝑥12 in 𝐺(𝑥), denoted [𝑥12]𝐺(𝑥).
‣ Use pen and paper Wolfram Alpha to expand 𝐺(𝑥):

𝐺(𝑥) = 𝑥18 + 3𝑥17 + 6𝑥16 + … + 28𝑥12⎵ + … + 6𝑥2 + 3𝑥 + 1

• The answer is [𝑥12]𝐺(𝑥) = 28 solutions.

63 / 100

https://www.wolframalpha.com/input?i=expand+%281%2Bx%2Bx%5E2%2Bx%5E3%2Bx%5E4%2Bx%5E5%2Bx%5E6%29%5E3

Slightly More Complex Combinatorial Problem
Example : Suppose we have marbles of three different colors (🔴, 🟢, 🔵), and we want to count the
number of ways to select 20 marbles, such that:
• There are an even number of 🔴: 1 + 𝑥2 + 𝑥4 + … + 𝑥20.
• There are at least 12 🟢: 𝑥12 + 𝑥13 + … + 𝑥20.
• There are at most 5 🔵: 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5.

Multiply polynomials and find [𝑥20]𝐺(𝑥):

[𝑥20](1 + 𝑥2 + 𝑥4 + … + 𝑥20)(𝑥12 + 𝑥13 + … + 𝑥20)(1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5) =

= [𝑥20](𝑥45 + 2𝑥44 + … + 21𝑥20⎵ + … + 2𝑥13 + 𝑥12)

= 21

64 / 100

Using Power Series in Combinatorial Problems
Example : Find the number of integer solutions to 𝑎1 + 𝑎2 + 𝑎3 = 12 with 𝑎1 ≥ 2, 3 ≤ 𝑎2 ≤ 6, 𝑎3 ≤ 9.

• Compose the generating function:

𝐺(𝑥) = (𝑥2 + 𝑥3 + …) ⋅ (𝑥3 + 𝑥4 + 𝑥5 + 𝑥6) ⋅ (1 + 𝑥 + 𝑥2 + … + 𝑥9)

• Substitute the power series with the corresponding simple forms:

𝐺(𝑥) = (𝑥2 ⋅ 1
1 − 𝑥

) ⋅ (𝑥3 ⋅ 1 − 𝑥4

1 − 𝑥
) ⋅ (1 − 𝑥10

1 − 𝑥
)

• Expand the series:

𝐺(𝑥) = 𝑥5 + 3𝑥6 + 6𝑥7 + 10𝑥8 + 14𝑥9 + 18𝑥10 + 22𝑥11 + 26𝑥12⎵ + 30𝑥13 +

34𝑥14 + 37𝑥15 + 39𝑥16 + 40𝑥17 + … + 40𝑥𝑛 + …

• Sequence: (𝑔𝑛) = (0, 0, 0, 0, 0, 1, 3, 6, 10, 14, 18, 22, 26, 30, 34, 37, 39, 40, …)

• Answer for 𝑛 = 12 is [𝑥12]𝐺(𝑥) = 26.
65 / 100

§10 Recurrence Relations

Recurrence Relations
Example :

• Recurrent relation defining a sequence (𝑎𝑛):

𝑎𝑛 = {𝑎0 = const if 𝑛 = 0
𝑎𝑛−1 + 𝑑 if 𝑛 > 0

• Solving it results in a non-recursive closed formula:

𝑎𝑛 = 𝑎0 + 𝑛 ⋅ 𝑑

• Checking it confirms that the formula is correct:

𝑎𝑛 = 𝑎𝑛−1⎵ + 𝑑 = 𝑎0 + (𝑛 − 1)𝑑⎵⎵⎵⎵⎵
𝑎𝑛−1

+ 𝑑 = 𝑎0 + 𝑛 ⋅ 𝑑 ∎

67 / 100

Linear Homogeneous Recurrence Relations

Definition 23 : A linear homogeneous recurrence relation of degree 𝑘 with constant coefficients is a
recurrence relation of the form

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + … + 𝑐𝑘𝑎𝑛−𝑘,

where 𝑐1, 𝑐2, …, 𝑐𝑘 are constants (real or complex numbers), and 𝑐𝑘 ≠ 0.

Examples :
• 𝑏𝑛 = 2.71𝑏𝑛−1 is a linear homogeneous recurrence relation of degree 1.
• 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 is a linear homogeneous recurrence relation of degree 2.
• 𝑔𝑛 = 2𝑔𝑛−5 is a linear homogeneous recurrence relation of degree 5.
• The recurrence relation 𝑎𝑛 = 𝑎𝑛−1 + 𝑎2

𝑛−2 is not linear.
• The recurrence relation 𝐻𝑛 = 2𝐻𝑛−1 + 1 is not homogeneous.
• The recurrence relation 𝐵𝑛 = 𝑛𝐵𝑛−1 does not have constant coefficients.

68 / 100

Characteristic Equations
Hereinafter, (∗) denotes a linear homogeneous recurrence relation 𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + … + 𝑐𝑘𝑎𝑛−𝑘.

Theorem 17 : 𝑎𝑛 = 𝑟𝑛 is a solution to (∗) if and only if 𝑟𝑛 = 𝑐1𝑟𝑛−1 + 𝑐2𝑟𝑛−2 + … + 𝑐𝑘𝑟𝑛−𝑘.

Definition 24 : A characteristic equation for (∗) is the algebraic equation in 𝑟 defined as:

𝑟𝑘 − 𝑐1𝑟𝑘−1 − 𝑐2𝑟𝑘−2 − … − 𝑐𝑘 = 0

The sequence (𝑎𝑛) with 𝑎𝑛 = 𝑟𝑛 (with 𝑟𝑛 ≠ 0) is a solution if and only if 𝑟 is a solution of the
characteristic equation. Such solutions are called characteristic roots of (∗).

69 / 100

Distinct Roots Case

Theorem 18 : Let 𝑐1 and 𝑐2 be real numbers. Suppose that 𝑟2 − 𝑐1𝑟 − 𝑐2 = 0 has two distinct roots
𝑟1 and 𝑟2. Then the sequence (𝑎𝑛) is a solution of the recurrence relation 𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 if and
only if 𝑎𝑛 = 𝛼1𝑟𝑛

1 + 𝛼2𝑟𝑛
2 for 𝑛 = 0, 1, 2, …, where 𝛼1 and 𝛼2 are constants.

Proof (sketch) : Since 𝑟1 and 𝑟2 are roots, then 𝑟2
1 = 𝑐1𝑟1 + 𝑐2 and 𝑟2

2 = 𝑐1𝑟2 + 𝑐2. Next, we can see:

𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 = 𝑐1(𝛼1𝑟𝑛−1
1 + 𝛼2𝑟𝑛−1

2) + 𝑐2(𝛼1𝑟𝑛−2
1 + 𝛼2𝑟𝑛−2

2)

= 𝛼1𝑟𝑛−2
1 (𝑐1𝑟1 + 𝑐2) + 𝛼2𝑟𝑛−2

2 (𝑐1𝑟2 + 𝑐2)

= 𝛼1𝑟𝑛−2
1 𝑟2

1 + 𝛼2𝑟𝑛−2
2 𝑟2

2

= 𝛼1𝑟𝑛
1 + 𝛼2𝑟𝑛

2
= 𝑎𝑛

To show that every solution (𝑎𝑛) of the recurrence relation 𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 has 𝑎𝑛 = 𝛼1𝑟𝑛
1 + 𝛼2𝑟𝑛

2
for some constants 𝛼1 and 𝛼2, suppose that the initial condition are 𝑎0 = 𝐶0 and 𝑎1 = 𝐶1, and show that
there exist constants 𝛼1 and 𝛼2 such that 𝑎𝑛 = 𝛼1𝑟𝑛

1 + 𝛼2𝑟𝑛
2 satisfies the same initial conditions. □

70 / 100

Solving Recurrence Relations using Characteristic Equations
Example : Solve 𝑎𝑛 = 𝑎𝑛−1 + 2𝑎𝑛−2 with 𝑎0 = 2 and 𝑎1 = 7.

• The characteristic equation is 𝑟2 − 𝑟 − 2 = 0.
• It has two distinct roots 𝑟1 = 2 and 𝑟2 = −1.
• The sequence (𝑎𝑛) is a solution iff 𝑎𝑛 = 𝛼1𝑟𝑛

1 + 𝛼2𝑟𝑛
2 for 𝑛 = 0, 1, 2, … and some constants 𝛼1 and 𝛼2.

{𝑎0 = 2 = 𝛼1 + 𝛼2
𝑎1 = 7 = 𝛼1 ⋅ 2 + 𝛼2 ⋅ (−1)

• Solving these two equations gives 𝛼1 = 3 and 𝛼2 = −1.
• Hence, the solution to the recurrence equation with given initial conditions is the sequence (𝑎𝑛) with

𝑎𝑛 = 3 ⋅ 2𝑛 − (−1)𝑛

71 / 100

Fibonacci Numbers
Example : Find the closed formula for Fibonacci numbers.

• The recurrence relation is 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2.
• The characteristic equation is 𝑟2 − 𝑟 − 1 = 0.
• The roots are 𝑟1 = (1 +

√
5)/2 and 𝑟2 = (1 −

√
5)/2.

• Therefore, the solution is 𝐹𝑛 = 𝛼1(1+
√

5
2)𝑛 + 𝛼2(1−

√
5

2)𝑛 for some constants 𝛼1 and 𝛼2.
• Using the initial conditions 𝐹0 = 0 and 𝐹1 = 1, we get

{
𝐹0 = 𝛼1 + 𝛼2 = 0
𝐹1 = 𝛼1 ⋅ (1+

√
5

2) + 𝛼2 ⋅ (1−
√

5
2) = 1

• Solving these two equations gives 𝛼1 = 1/
√

5 and 𝛼2 = −1/
√

5.
• Hence, the closed formula (also known as Binet’s formula) for Fibonacci numbers is

𝐹𝑛 = 1√
5
(1 +

√
5

2
)

⎵⎵⎵⎵⎵
𝜑

𝑛

− 1√
5
(1 −

√
5

2
)

⎵⎵⎵⎵⎵
𝜓

𝑛

= 𝜑𝑛 − 𝜓𝑛
√

5

72 / 100

Single Root Case

Theorem 19 : Let 𝑐1 and 𝑐2 be real numbers. Suppose that 𝑟2 − 𝑐1𝑟 − 𝑐2 = 0 has a single root 𝑟0. A
sequence (𝑎𝑛) is a solution of the recurrence relation 𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 if and only if
𝑎𝑛 = 𝛼1𝑟𝑛

0 + 𝛼2𝑛𝑟𝑛
0 for 𝑛 = 0, 1, 2, …, where 𝛼1 and 𝛼2 are constants.

Example : Solve 𝑎𝑛 = 6𝑎𝑛−1 − 9𝑎𝑛−2 with 𝑎0 = 1 and 𝑎1 = 6.

The characteristic equation is 𝑟2 − 6𝑟 + 9 = 0 with a single (repeated) root 𝑟0 = 3. Hence, the solutions is
of the form 𝑎𝑛 = 𝛼13𝑛 + 𝛼2𝑛3𝑛.

{𝑎0 = 1 = 𝛼1
𝑎1 = 6 = 𝛼1 ⋅ 3 + 𝛼2 ⋅ 3 ⟹ {𝛼1 = 1

𝛼2 = 1

Thus, the solution is 𝑎𝑛 = 3𝑛 + 𝑛3𝑛.

73 / 100

Generic Case
TODO

74 / 100

Linear Non-Homogeneous Recurrence Relations
𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + … + 𝑐𝑘𝑎𝑛−𝑘 + 𝐹(𝑛)

Example : 𝑎𝑛 = 3𝑎𝑛−1 + 2𝑛 is non-homogeneous.

Definition 25 : An associated homogeneous recurrence relation is the relation without the term 𝐹(𝑛).

75 / 100

Solving Non-Homogeneous Recurrence Relations

Theorem 20 : If (𝑎(𝑝)
𝑛) is a particular solution of the non-homogeneous linear recurrence relation

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + … + 𝑐𝑘𝑎𝑛−𝑘 + 𝐹(𝑛), then every solution is of the form (𝑎(𝑝)
𝑛 + 𝑎(ℎ)

𝑛), where
(𝑎(ℎ)

𝑛) is a solution of the associated homogeneous recurrence relation.

Example : Find all solutions of the recurrence relation 𝑎𝑛 = 3𝑎𝑛−1 + 2𝑛. What is the solution with 𝑎1 = 3?

• First, solve the associated homogeneous recurrence relation 𝑎𝑛 = 3𝑎𝑛−1.
• It has a general solution 𝑎(ℎ)

𝑛 = 𝛼3𝑛, where 𝛼 is a constant.
• To find a particular solution, observe that 𝐹(𝑛) = 2𝑛 is a polynomial in 𝑛 of degree 1, so a reasonable

trial solution is a linear function in 𝑛, for example, 𝑝𝑛 = 𝑐𝑛 + 𝑑, where 𝑐 and 𝑑 are constants.
• Thus, the equation 𝑎𝑛 = 3𝑎𝑛−1 + 2𝑛 becomes 𝑐𝑛 + 𝑑 = 3(𝑐(𝑛 − 1) + 𝑑) + 2𝑛.
• Simplify and reorder: (2 + 2𝑐)𝑛 + (2𝑑 − 3𝑐) = 0.

{2 + 2𝑐 = 0
2𝑑 − 3𝑐 = 0 ⟹ {𝑐 = −1

𝑑 = −3/2
• Thus, 𝑎(𝑝)

𝑛 = −𝑛 − 3/2 is a particular solution.
76 / 100

Solving Non-Homogeneous Recurrence Relations [2]
• By Theorem 20, all solutions are of the form

𝑎𝑛 = 𝑎(𝑝)
𝑛 + 𝑎(ℎ)

𝑛 = −𝑛 − 3/2 + 𝛼3𝑛,

where 𝛼 is a constant.
• To find the solution with 𝑎1 = 3, let 𝑛 = 1 in the formula: 3 = −1 − 3/2 + 3𝛼, thus 𝛼 = 11/6.
• The solution is 𝑎𝑛 = −𝑛 − 3/2 + (11/6)3𝑛.

77 / 100

§11 Annihilators

Operators

Definition 26 : Operators are higher-order functions that transform functions into other functions.

For example, differential and integral operators 𝑑
𝑑𝑥 and ∫ 𝑑𝑥 are core operators in calculus.

In combinatorics, we are interested in the following three operators:
• Sum: (𝑓 + 𝑔)(𝑛) ≔ 𝑓(𝑛) + 𝑔(𝑛)
• Scale: (𝛼 ⋅ 𝑓)(𝑛) ≔ 𝛼 ⋅ 𝑓(𝑛)
• Shift: (E 𝑓)(𝑛) ≔ 𝑓(𝑛 + 1)

Examples :
• Scale and Shift operators are linear: E(𝑓 − 3(𝑔 − ℎ)) = E 𝑓 + (−3) E 𝑔 + 3 E ℎ
• Operators are composable: (E −2)𝑓 ≔ E 𝑓 + (−2)𝑓
• E2 𝑓 = E(E 𝑓)
• E𝑘 𝑓(𝑛) = 𝑓(𝑛 + 𝑘)
• (E −2)2 = (E −2)(E −2)
• (E −1)(E −2) = E2 −3 E +2

79 / 100

Applying Operators
Examples : Below are the results of applying different operators to 𝑓(𝑛) = 2𝑛:

2𝑓(𝑛) = 2 ⋅ 2𝑛 = 2𝑛+1

3𝑓(𝑛) = 3 ⋅ 2𝑛

E 𝑓(𝑛) = 2𝑛+1

E2 𝑓(𝑛) = 2𝑛+2

(E −2)𝑓(𝑛) = E 𝑓(𝑛) − 2𝑓(𝑛) = 2𝑛+1 − 2𝑛+1 = 0

(E2 −1)𝑓(𝑛) = E2 𝑓(𝑛) − 𝑓(𝑛) = 2𝑛+2 − 2𝑛 = 3 ⋅ 2𝑛

80 / 100

Compound Operators

The compound operators can be seen as polynomials in “variable” E.

Example : The compound operators E2 −3 E +2 and (E −1)(E −2) are equivalent:

Let 𝑔(𝑛) ≔ (E −2)𝑓(𝑛) = 𝑓(𝑛 + 1) − 2𝑓(𝑛)
Then (E −1)(E −2)𝑓(𝑛) = (E −1)𝑔(𝑛)

= 𝑔(𝑛 + 1) − 𝑔(𝑛)
= [𝑓(𝑛 + 2) − 2𝑓(𝑛 − 1)] − [𝑓(𝑛 + 1) − 2𝑓(𝑛)]
= 𝑓(𝑛 + 2) − 3𝑓(𝑛 + 1) + 2𝑓(𝑛)

= (E2 −3 E +2)𝑓(𝑛) ✓

81 / 100

Operators Summary

Operator Definition
addition (𝑓 + 𝑔)(𝑛) ≔ 𝑓(𝑛) + 𝑔(𝑛)
subtraction (𝑓 − 𝑔)(𝑛) ≔ 𝑓(𝑛) − 𝑔(𝑛)
multiplication (𝛼 ⋅ 𝑓)(𝑛) ≔ 𝛼 ⋅ 𝑓(𝑛)
shift E 𝑓(𝑛) ≔ 𝑓(𝑛 + 1)
k-fold shift E𝑘 𝑓(𝑛) ≔ 𝑓(𝑛 + 𝑘)

(𝑋 + 𝑌)𝑓 ≔ 𝑋 𝑓 + 𝑌 𝑓
(𝑋 − 𝑌)𝑓 ≔ 𝑋 𝑓 − 𝑌 𝑓

composition

𝑋 𝑌 𝑓 ≔ 𝑋(𝑌 𝑓) = 𝑌 (𝑋 𝑓)
distribution 𝑋(𝑓 + 𝑔) = 𝑋 𝑓 + 𝑋 𝑔

82 / 100

Annihilators

Definition 27 : An annihilator of a function 𝑓 is any non-trivial operator that transforms 𝑓 into zero.

TODO: examples!

83 / 100

Annihilators Summary

Operator Functions annihilated
E −1 𝛼
E −𝑎 𝛼𝑎𝑛

(E −𝑎)(E −𝑏) 𝛼𝑎𝑛 + 𝛽𝑏𝑛 [if 𝑎 ≠ 𝑏]
(E −𝑎0)(E −𝑎1)…(E −𝑎𝑘) ∑𝑘

𝑖=0 𝛼𝑖𝑎𝑛
𝑖 [if 𝑎𝑖 are distinct]

(E −1)2 𝛼𝑛 + 𝛽
(E −𝑎)2 (𝛼𝑛 + 𝛽)𝑎𝑛

(E −𝑎)2(E −𝑏) (𝛼𝑛 + 𝛽)𝑎𝑛 + 𝛾𝑏𝑛 [if 𝑎 ≠ 𝑏]
(E −𝑎)𝑑 (∑𝑑−1

𝑖=0 𝛼𝑖𝑛𝑖)𝑎𝑛

84 / 100

Properties of Annihilators

Theorem 21 : If 𝑋 annihilates 𝑓 , then 𝑋 also annihilates 𝛼𝑓 for any constant 𝛼.

Theorem 22 : If 𝑋 annihilates both 𝑓 and 𝑔, then 𝑋 also annihilates 𝑓 ± 𝑔.

Theorem 23 : If 𝑋 annihilates 𝑓 , then 𝑋 also annihilates E 𝑓 .

Theorem 24 : If 𝑋 annihilates 𝑓 and 𝑌 annihilates 𝑔, then 𝑋 𝑌 annihilates 𝑓 ± 𝑔.

85 / 100

Annihilating Recurrences
1. Write the recurrence in the operator form.
2. Find the annihilator for the recurrence.
3. Factor the annihilator, if necessary.
4. Find the generic solution from the annihilator.
5. Solve for coefficients using the initial conditions.

Example : 𝑟(𝑛) = 5𝑟(𝑛 − 1) with 𝑟(0) = 3.

1. 𝑟(𝑛 + 1) − 5𝑟(𝑛) = 0
(E −5)𝑟(𝑛) = 0

2. (E −5) annihilates 𝑟(𝑛).

3. (E −5) is already factored.

4. 𝑟(𝑛) = 𝛼5𝑛 is a generic solution.

5. 𝑟(0) = 𝛼 = 3 ⟹ 𝛼 = 3

Thus, 𝑟(𝑛) = 3 ⋅ 5𝑛.
86 / 100

Annihilating Recurrences [2]
Example : 𝑇 (𝑛) = 2𝑇 (𝑛 − 1) + 1 with 𝑇 (0) = 0

1. 𝑇 (𝑛 + 1) − 2𝑇 (𝑛) = 1
(E −2)𝑇 (𝑛) = 1

2. (E −2) does not annihilate 𝑇 (𝑛): the residue is 1.
(E −1) annihilates the residue 1.
Thus, (E −1)(E −2) annihilates 𝑇 (𝑛).

3. (E −1)(E −2) is already factored.

4. 𝑇 (𝑛) = 𝛼2𝑛 + 𝛽 is a generic solution.

5. Find the coefficients 𝛼, 𝛽 using 𝑇 (0) = 0 and 𝑇 (1) = 2𝑇 (0) + 1 = 1:
𝑇 (0) = 0 = 𝛼 ⋅ 20 + 𝛽
𝑇(1) = 1 = 𝛼 ⋅ 21 + 𝛽} ⟹ {𝛼 = 1

𝛽 = −1

Thus, 𝑇 (𝑛) = 2𝑛 − 1.

87 / 100

Annihilating Recurrences [3]
Example : 𝑇 (𝑛) = 𝑇(𝑛 − 1) + 2𝑇 (𝑛 − 2) + 2𝑛 − 𝑛2

1. Operator form:
(E2 − E −2)𝑇 (𝑛) = E2(2𝑛 − 𝑛2)

2. Annihilator:
(E2 − E −2)(E −2)(E −1)3

3. Factorization:
(E +1)(E −2)2(E −1)3

4. Generic solution:
𝑇 (𝑛) = 𝛼(−1)𝑛 + (𝛽𝑛 + 𝛾)2𝑛 + 𝛿𝑛2 + 𝜀𝑛 + 𝑛

5. There are no initial conditions. We can only provide an asymptotic bound.

Thus, 𝑇 (𝑛) ∈ Θ(𝑛2𝑛)

88 / 100

§12 Asymptotic Analysis

Asymptotics 101

Definition 28 (Big-O notation) : The notation 𝑓 ∈ 𝑂(𝑔) means that the function 𝑓(𝑛) is asymptotically
bounded from above by the function 𝑔(𝑛), up to a constant factor.

𝑓(𝑛) ∈ 𝑂(𝑔(𝑛)) ↔ ∃𝑐 > 0. ∃𝑛0. ∀𝑛 > 𝑛0 : |𝑓(𝑛)| ≤ 𝑐 ⋅ 𝑔(𝑛)

Definition 29 (Small-o notation) : The notation 𝑓 ∈ 𝑜(𝑔) means that the function 𝑓(𝑛) is asympotically
dominated by 𝑔(𝑛), up to a constant factor.

𝑓(𝑛) ∈ 𝑜(𝑔(𝑛)) ↔ ∀𝑐 > 0. ∃𝑛0. ∀𝑛 > 𝑛0 : |𝑓(𝑛)| ≤ 𝑐 ⋅ 𝑔(𝑛)

Note : The difference is only in the ∃𝑐 and ∀𝑐 quantifier.

Note : Flip ≤ to ≥ in the above definitions to obtain the dual notations: 𝑓 ∈ Ω(𝑔) and 𝑓 ∈ 𝜔(𝑔).

Definition 30 (Theta notation) : 𝑓 ∈ Θ(𝑔) iff 𝑓 ∈ 𝑂(𝑔) and 𝑔 ∈ 𝑂(𝑓).

90 / 100

Limits

Notation Name Description Limit definition

𝑓 ∈ 𝑜(𝑔) Small Oh 𝑓 is dominated by 𝑔 lim
𝑛⟶∞

𝑓(𝑛)
𝑔(𝑛)

= 0

𝑓 ∈ 𝑂(𝑔) Big Oh 𝑓 is bounded above by 𝑔 lim sup
𝑛⟶∞

|𝑓(𝑛)|
𝑔(𝑛)

< ∞

𝑓 ∼ 𝑔 Equivalence 𝑓 is asympotically equal to 𝑔 lim
𝑛⟶∞

𝑓(𝑛)
𝑔(𝑛)

= 1

𝑓 ∈ Ω(𝑔) Big Omega 𝑓 is bounded below by 𝑔 lim inf
𝑛⟶∞

𝑓(𝑛)
𝑔(𝑛)

> 0

𝑓 ∈ 𝜔(𝑔) Small Omega 𝑓 dominates 𝑔 lim
𝑛⟶∞

𝑓(𝑛)
𝑔(𝑛)

= ∞

91 / 100

Asymptotic Equivalence

Definition 31 : The notation 𝑓 ∼ 𝑔 means that functions 𝑓(𝑛) and 𝑔(𝑛) are asymptotically equivalent.

𝑓 ∼ 𝑔 ↔ ∀𝜀 > 0. ∃𝑛0. ∀𝑛 > 𝑛0 : |𝑓(𝑛)
𝑔(𝑛)

− 1| ≤ 𝜀 ↔ lim
𝑛⟶∞

𝑓(𝑛)
𝑔(𝑛)

= 1

Note : 𝑓 ∼ 𝑔 and 𝑔 ∼ 𝑓 are equivalent, since ∼ is an equivalence relation.

Note : 𝑓 ∼ 𝑔 and 𝑓 ∈ Θ(𝑔) are different notions!

92 / 100

Some Properties of Asymptotics
𝑓 ∈ 𝑂(𝑔) and 𝑓 ∈ Ω(𝑔) ↔ 𝑓 ∈ Θ(𝑔)

𝑓 ∈ 𝑂(𝑔) ↔ 𝑔 ∈ Ω(𝑓)
𝑓 ∈ 𝑜(𝑔) ↔ 𝑔 ∈ 𝜔(𝑓)
𝑓 ∈ 𝑜(𝑔) → 𝑓 ∈ 𝑂(𝑔)
𝑓 ∈ 𝜔(𝑔) → 𝑓 ∈ Ω(𝑔)

𝑓 ∼ 𝑔 → 𝑓 ∈ Θ(𝑔)

93 / 100

Divide-and-Conquer Algorithms Analysis

94 / 100

Divide-and-Conquer Recurrence

𝑇 (𝑛) = 𝑎 ⋅ 𝑇(𝑛
𝑏
) + 𝑓(𝑛)

• 𝑇 (𝑛) is the cost of the recursive algorithm
• 𝑎 is the number of parts (sub-problems)
• 𝑛/𝑏 is the size of each part
• 𝑇(𝑛

𝑏) is the cost of each sub-problem
• 𝑓(𝑛) is the cost of splitting and merging the solutions of the subproblems

Hereinafter, 𝑐crit = log𝑏 𝑎 is a critical constant.

95 / 100

Master Theorem

𝑇 (𝑛) = 𝑎 ⋅ 𝑇(𝑛
𝑏
) + 𝑓(𝑛)

Case Description Condition Bound
Case I “merge” ≪ “recursion” 𝑓(𝑛) ∈ 𝑂(𝑛𝑐)

where 𝑐 < 𝑐crit

𝑇 (𝑛) ∈ Θ(𝑛𝑐crit)

Case II “merge” ≈ “recursion” 𝑓(𝑛) ∈ Θ(𝑛𝑐crit log𝑘 𝑛)
where 𝑘 ≥ 0

𝑇 (𝑛) ∈ Θ(𝑛𝑐crit log𝑘+1 𝑛)

Case III “merge” ≫ “recursion” 𝑓(𝑛) ∈ Ω(𝑛𝑐crit)
where 𝑐 > 𝑐crit

𝑇 (𝑛) ∈ Θ(𝑓(𝑛))

Note : Case III also requires the regularity condition to hold: 𝑎𝑓(𝑛/𝑏) ≤ 𝑘𝑓(𝑛) for some constant 𝑘 < 1 and
all sufficiently large 𝑛.

Note : There is an extended Case II, with three sub-cases (IIa, IIb, IIc) for other values of 𝑘.

96 / 100

Examples of Master Theorem Application
Examples : Determine the case of Master Theorem and the bound of 𝑇 (𝑛) for the following recurrences.

1. 𝑇 (𝑛) = 3𝑇 (𝑛/9) +
√

𝑛

2. 𝑇 (𝑛) = 2𝑇 (𝑛/4) + 𝑛0.51

3. 𝑇 (𝑛) = 5𝑇 (𝑛/25) + 𝑛0.49

4. 𝑇 (𝑛) = 𝑇(⌊𝑛
2 ⌋) + 𝑇(⌈𝑛

2 ⌉)

5. 𝑇 (𝑛) = 3𝑇 (𝑛/9) +
√

𝑛
log 𝑛

6. 𝑇 (𝑛) = 6𝑇 (𝑛/36) +
√

𝑛
log2 𝑛

7. 𝑇 (𝑛) = 4𝑇 (𝑛/16) + √ 𝑛
log 𝑛

97 / 100

Akra–Bazzi Method

𝑇 (𝑛) = 𝑓(𝑛) + ∑
𝑘

𝑖=1
𝑎𝑖𝑇

(
((𝑏𝑖𝑛 + ℎ𝑖(𝑛)⎵

∗)
))

• 𝑘 is a constant
• 𝑎𝑖 > 0
• 0 < 𝑏𝑖 < 1
• ℎ𝑖(𝑛) ∈ 𝑂(𝑛

log2 𝑛) is a small perturbation

Bound of 𝑇 (𝑛) by Akra–Bazzi method:

𝑇 (𝑛) ∈ Θ(𝑛𝑝 ⋅ (1 + ∫
𝑛

1

𝑓(𝑥)
𝑥𝑝+1 𝑑𝑥))

where 𝑝 is the solution for the equation ∑
𝑘

𝑖=1
𝑎𝑖𝑏

𝑝
𝑖 = 1

98 / 100

Example of Akra–Bazzi Method Application
Example : Suppose the runtime of an algorithm is expressed by the following recurrence relation:

𝑇 (𝑛) = {
1 for 0 ≤ 𝑛 ≤ 3
𝑛2 + 7

4𝑇(⌊1
2𝑛⌋) + 𝑇(⌈3

4𝑛⌉) for 𝑛 > 3

• Note that the Master Theorem is not applicable here, since there are two different recursive terms.
• Let’s apply the Akra–Bazzi method. First, solve the equation 74(1

2)𝑝 + (3
4)𝑝 = 1. This gives us 𝑝 = 2.

• Next, use the formula from AB-method to obtain the bound:

𝑇 (𝑥) ∈ Θ(𝑥𝑝(1 + ∫
𝑥

1

𝑓(𝑢)
𝑥𝑝+1 𝑑𝑢)) =

= Θ(𝑥2(1 + ∫
𝑥

1

𝑢2

𝑢3 𝑑𝑢)) =

= Θ(𝑥2(1 + ln 𝑥)) =

= Θ(𝑥2 log 𝑥)
99 / 100

Bibliography
[1] G. Pólya, Mathematics and Plausible Reasoning, Volume 1: Induction and Analogy in Mathematics. 1954.

[2] H. S. Wilf, generatingfunctionology, 3rd ed. 2006.

100 / 100

	Combinatorics
	Introduction to Combinatorics
	Discrete Structures
	Enumerative Combinatorics
	Algorithmic and Optimization Methods

	Basic Counting Principles
	Basic Counting Rules
	Addition Principle
	Multiplication Principle
	Subtraction Principle
	Bijection Principle
	Pigeonhole Principle
	Double Counting

	Arrangements, Permutations, Combinations
	Ordered Arrangements
	Permutations
	Counting Permutations
	Counting Circular Permutations
	Unordered Arrangements
	Subsets
	Counting k-Combinations

	Multisets
	Multiset
	k-Combinations of a Multiset
	k-Permutations of a Multiset
	Binomial Theorem
	Multinomial Theorem
	Permutations of a Multiset
	k-Combinations of an Infinite Multiset

	Compositions
	Weak Compositions
	Counting Weak Compositions
	Compositions
	Parallel Summation Identity

	Set Partitions
	Set Partitions
	Examples of Set Partitions
	Counting Set Partitions
	Bell Numbers

	Integer Partitions
	Integer Partitions
	Ferrer Diagrams and Yound Tableaux

	Inclusion–Exclusion
	The Inclusion–Exclusion Principle
	Principle of Inclusion–Exclusion (PIE)
	Very Useful Corollary of PIE
	Applications of PIE
	Counting Surjections via PIE
	More Useful Corollaries
	Derangements

	Generating Functions
	Generating Functions
	Ordinary Generating Functions
	More Examples of Generating Functions
	Exercises
	Solving Combinatorial Problems via Generating Functions
	Slightly More Complex Combinatorial Problem
	Using Power Series in Combinatorial Problems

	Recurrence Relations
	Recurrence Relations
	Linear Homogeneous Recurrence Relations
	Characteristic Equations
	Distinct Roots Case
	Solving Recurrence Relations using Characteristic Equations
	Fibonacci Numbers
	Single Root Case
	Generic Case
	Linear Non-Homogeneous Recurrence Relations
	Solving Non-Homogeneous Recurrence Relations

	Annihilators
	Operators
	Applying Operators
	Compound Operators
	Operators Summary
	Annihilators
	Annihilators Summary
	Properties of Annihilators
	Annihilating Recurrences

	Asymptotic Analysis
	Asymptotics 101
	Limits
	Asymptotic Equivalence
	Some Properties of Asymptotics
	Divide-and-Conquer Algorithms Analysis
	Divide-and-Conquer Recurrence
	Master Theorem
	Examples of Master Theorem Application
	Akra–Bazzi Method
	Example of Akra–Bazzi Method Application
	Bibliography

