Discrete Mathematics

Formal Languages – Spring 2025

Konstantin Chukharev

§1 Formal Languages

Basic Terminology

Definition 1: *Alphabet* Σ is a finite non-empty set of symbols. *Examples*: $\Sigma_1 = \{a, b, c\}, \Sigma_2 = \{0, 1\}, \Sigma_3 = \{ \textcircled{a}, \textcircled{b}, \textcircled{b}, \textcircled{b} \}.$

Definition 2: A *word*, or a *string*, over Σ is a *finite* sequence of symbols from Σ . *Examples*: "abacaba", "10110001", "i am a word", "" (empty word ε).

Definition 3: The set of *all* finite words over the alphabet Σ is called the *Kleene star*, $\Sigma^* = \bigcup_{k=0}^{\infty} \Sigma^k$.

Definition 4: A *formal language* $L \subseteq \Sigma^*$ is a set of finite words over a finite alphabet. *Examples:* $L_1 = \{0, 001, 0001, ...\}, L_2 = \{a, aba, ababa, abababa, ...\}, L_3 = \emptyset, L_4 = \{\varepsilon, ricercar\}.$

Operations of Languages

- A formal language, $L\subseteq \Sigma^*,$ can be defined by:
 - \blacktriangleright a enumeration of words, e.g. $L=\{w_1,w_2,...,w_n\}$
 - ▶ a regular expression, e.g. $L \triangleq 01^*$
 - ▶ a *formal grammar*, e.g. $L \cong G$
- *Set-theoretic* operations:
 - + $L_1 \cup L_2 = \{w \mid w \in L_1 \lor w \in L_2\}$, the *union* of L_1 and L_2
 - $\overline{L} = \{w \mid w \notin L\} = \Sigma^* \setminus L$, the *complement* of L
 - |L| is the *cardinality* of L
- Concatenation:
- L₁ · L₂ = {ab | a ∈ L₁, b ∈ L₂}, where ab is the concatenation of words a and b.
 L^k = L · ... · L = {ww...w | w ∈ L}
 L⁰ = {ε}
 Kleene star: L* = ⋃_{k=0}[∞] L^k

Regular Languages

Definition 5: A class of regular languages REG is defined inductively:

- $\operatorname{Reg}_0 = \{\emptyset, \{\varepsilon\}\} \cup \{\{a\} \mid a \in \Sigma\}$, the *empty* and *singleton* languages.
- $$\begin{split} \operatorname{Reg}_{i+1} &= \operatorname{Reg}_i \cup \{A \cup B \mid A, B \in \operatorname{Reg}_i\} \cup \{A \cdot B \mid A, B \in \operatorname{Reg}_i\} \cup \{A^* \mid A \in \operatorname{Reg}_i\}, \\ \text{the inductively extended } (i+1) \text{-th } \underbrace{generation}_{\infty} \text{ of regular languages.} \end{split}$$
- REG = $\bigcup_{k=0}^{\infty} \operatorname{Reg}_k$, the *class* of all regular languages.

Theorem 1: REG is closed under union, concatenation, and Kleene star operations.

- **Proof**: Let $A \in \operatorname{Reg}_i$, $B \in \operatorname{Reg}_i$.
- $(A \cup B) \in \left(\operatorname{Reg}_i \cup \operatorname{Reg}_j\right) \in \operatorname{Reg}_{\max(i,j)+1} \subseteq \operatorname{REG}$
- $(A \cdot B) \in \left(\operatorname{Reg}_i \cdot \operatorname{Reg}_j\right) \in \operatorname{Reg}_{\max(i,j)+1} \subseteq \operatorname{REG}$
- $\bullet \ A^* \in \mathrm{Reg}_{i+1} \subseteq \mathrm{REG}$

Regular Expressions

Language	Expression	Description
Ø		Empty language
$\{\varepsilon\}$	ε	Language with a single empty word
$\{a\}$	а	Singleton language with a literal character "a"
A	α	Language A denoted by regex α
В	eta	Language B denoted by regex β
$A\cup B$	$\alpha \mid \beta$	Union of languages A and B
$A \cdot B$	lphaeta	Concatenation of languages ${\cal A}$ and ${\cal B}$
A^*	$lpha^*$	Kleene star of language A
A^+	$lpha^+$	Kleene plus of language A

Example: $(a|bc)^* = \{\varepsilon, a, aa, aaa, ..., bc, bcbc, bcbcbc, ..., abc, bca, abca, abcbc, bcabc, ... \}$ See also: PCRE $\stackrel{\boxtimes}{=}$

§2 Automata

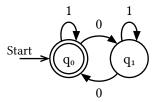
Deterministic Finite Automata

Definition 6: Deterministic Finite Automaton (DFA) is a 5-tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ where:

- Q is a *finite* set of states,
- Σ is an *alphabet* (finite set of input symbols),
- $\delta: Q \times \Sigma \longrightarrow Q$ is a transition function,
- $q_0 \in Q$ is the *start* state,
- $F \subseteq Q$ is a set of *accepting* states.

DFAs recognize *regular* languages (Type 3).

Example: Automaton \mathcal{A} recognizing strings with an even number of 0s, $\mathcal{L}(\mathcal{A}) = \{0^n \mid n \text{ is even}\}$.



Here, q_0 is the *start* (denoted by an arrow) and also the *accepting* (denoted by double circle) state.

Exercises

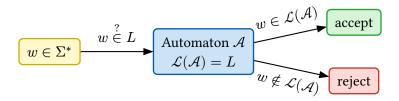
For each language below (over the alphabet $\Sigma = \{0, 1\}$), draw a DFA recognizing it: **1.** $L_1 = \{101, 110\}$ **2.** $L_2 = \Sigma^* \setminus \{101, 110\}$ **3.** $L_3 = \{w \mid w \text{ starts and ends with the same bit}\}$ **4.** $L_4 = \{110\}^* = \{\varepsilon, 110, 110110, 110110110, ...\}$

5. $L_5 = \{w \mid w \text{ contains 110 as a substring}\}$

Recognizers vs Transducers

There are two main types of finite-state machines:

1. Acceptors (or recognizers), automata that produce a binary yes/no answer, indicating whether or not the recieved input word $w \in \Sigma^*$ is accepted, i.e., belongs to the language L recognized by the automaton.



- 1. *Transducers*, machines that produce an output action *for each* symbol of an input.
 - Moore machines (1956)
 - Mealy machines (1955)

Computation

Definition 7: A process of *computation* by a finite-state machine \mathcal{A} is a finite sequence of *configurations*, or *snapshots*. A set of all possible configurations is denoted SNAP = $Q \times \Sigma^*$.

Definition 8: A *reachability relation* ⊢ is a binary relation over configurations:

$$\langle q, \alpha \rangle \vdash \langle r, \beta \rangle \quad \text{iff} \quad \begin{cases} \alpha = c\beta \quad \text{where } c \in \Sigma \\ r = \delta(q, c) \end{cases}$$

- $c_1 \vdash c_2$ means "configuration c_2 is reachable in *one step* from c_1 ".
- \vdash^* , the reflexive-transitive closure of \vdash , denotes "reachable in *any* number of steps".

Automata Languages

Definition 9: A word $w \in \Sigma^*$ is *accepted* by an automaton \mathcal{A} if the computation, starting in the initial configuration at state q_0 with input w, *can reach the final configuration* $\langle f, \varepsilon \rangle$, where $f \in F$ is any accepting state, and ε denotes that the input has been fully consumed.

Formally, $\mathcal{A} \text{ accepts } w \in \Sigma^* \text{ if } \langle q_0, w \rangle \vdash^* \langle f, \varepsilon \rangle \text{ for some } f \in F.$

Definition 10: The language *recognized* by an automaton \mathcal{A} is a set of all words accepted by \mathcal{A} . $\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \langle q_0, w \rangle \vdash^* \langle f, \varepsilon \rangle \text{ where } f \in F \}$

Definition 11: The class of *automaton languages* recognized by DFAs is denoted AUT.

 $AUT = \{X \mid \exists \mathcal{A} \text{ such that } \mathcal{L}(\mathcal{A}) = X\}$

Kleene's Theorem

Theorem 2: REG = AUT.

Proof: See the next lecture!

 \square

§3 Extra slides

Chomsky Hierarchy

Definition 12 (Formal language): A set of strings over an alphabet Σ , closed under concatenation.

Formal languages are classified by *Chomsky hierarchy*: Type 0: Recursively Enumerable – Turing Machines • Type 1: Context-Sensitive – Linear TMs Type 2: Context-Free – Pushdown Automata Recursively Enumerable • Type 3: Regular – Finite Automata Context-Sensitive Noam Chomsky *Examples*: Context-Free • $L = \{a^n \mid n \ge 0\}$ Regular • $L = \{a^n b^n \mid n \ge 0\}$ • $L = \{a^n b^n c^n \mid n > 0\}$ • $L = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \}$