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Graph

Theory

• Graphs & digraphs

• Paths & connectivity

• Trees & spanning trees

• Bipartite graphs

• Matchings & Hall’s theorem

• Planarity & coloring

• Network flows

Languages &

Computation

• Alphabets & formal languages

• Regular expressions

• Finite automata (DFA, NFA)

• Pumping lemma

• Context-free grammars

• Pushdown automata

• Turing machines

• Decidability & complexity

Combinatorics

& Recurrences

• Counting principles

• Permutations & combinations

• Inclusion–exclusion

• Partitions & Stirling numbers

• Generating functions

• Recurrence relations

• Asymptotic analysis
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Graph Theory

“The origins of graph theory are humble, even frivolous.”

— Norman L. Biggs

Leonhard Euler Arthur Cayley William Rowan 

Hamilton

Karl Menger Philip Hall



Why Graph Theory?

Graphs are everywhere — they model relationships, connections, and structures.

Real-world applications:

• Social networks (friendships)

• Computer networks (routers)

• Transportation (roads, flights)

• Biology (protein interactions)

• Chemistry (molecular bonds)

Computer science applications:

• Data structures (linked lists, trees)

• Algorithms (shortest paths, flows)

• Compilers (dependency graphs)

• Databases (query optimization)

• AI (neural networks, knowledge graphs)

The power of abstraction: By stripping away irrelevant details, graphs let us see the structure of a 

problem. The same algorithm that finds the shortest route between cities also finds the fastest path in 

a game tree or the most efficient way to schedule tasks.
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The Seven Bridges of Königsberg

In 1736, Leonhard Euler solved a famous puzzle:

Can one walk through the city of Königsberg, 

crossing each of its seven bridges exactly once?

Euler proved this is impossible — and in doing so, 

invented graph theory.

𝐴 𝐵

𝐶

𝐷

Historical note: This problem marks the birth of topology and graph theory as mathematical 

disciplines.
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Basic Definitions



What is a Graph?

Graphs as models: Graphs are mathematical abstractions for modeling relationships, connections, 

and structures. Different kinds of relationships lead to different types of graphs.

Definition 1 (Abstract Approach) :  A graph is fundamentally a triple 𝐺 = (𝑉 , 𝐸, 𝐹), where:

• 𝑉 = {𝑣1, 𝑣2, …} is a finite set of abstract vertices (unique objects)

• 𝐸 = {𝑒1, 𝑒2, …} is a finite set of abstract edges (connections)

• 𝐹  is a collection of functions that capture the graph’s structure and semantics

The power of abstraction: Vertices and edges are just labels — the functions 𝐹  define all the 

meaning:

• For undirected graphs: 𝐹 = {ends : 𝐸 → (𝑉
2 )} maps each edge to its two endpoints

• For directed graphs: 𝐹 = {begin : 𝐸 → 𝑉 , end : 𝐸 → 𝑉 } specify source and target

• For weighted graphs: add weight : 𝐸 → ℝ
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What is a Graph? [2]

• For hypergraphs: incidence : 𝐸 → 2𝑉  maps edges to subsets of vertices

• For vertex-labeled graphs: add label : 𝑉 → Σ for some alphabet Σ

Notation :

• 𝑉 (𝐺) denotes the vertex set of graph 𝐺
• 𝐸(𝐺) denotes the edge set of graph 𝐺
• |𝑉 (𝐺)| is the order of 𝐺 (number of vertices)

• |𝐸(𝐺)| is the size of 𝐺 (number of edges)

Bonus: This abstract approach handles multigraphs (parallel edges) and loops naturally — multiple 

edges in 𝐸 can map to the same endpoint pair, and a loop edge maps to a singleton set {𝑣} or has 

begin(𝑒) = end(𝑒) = 𝑣.
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Structural Representation (Alternative Approach)

Definition 2 (Structural Approach) :  Instead of abstract edges + functions, we can encode structure 

directly into the edge definition:

• Undirected: 𝐸 ⊆ (𝑉
2 ) (unordered pairs {𝑢, 𝑣})

• Directed: 𝐸 ⊆ 𝑉 × 𝑉  (ordered pairs (𝑢, 𝑣))
• Weighted: 𝐸 ⊆ 𝑉 × 𝑉 × ℝ (triples (𝑢, 𝑣, 𝑤))
• Loops: Include singletons {𝑣} in 𝐸 or allow (𝑣, 𝑣)

Trade-offs:

• Pros: Simpler for basic graphs; closer to programming impl (edge lists, adjacency matrices)

• Cons: Less flexible; need ad-hoc extensions for weighted graphs, hypergraphs, attributes; mixing 

structure with semantics

In practice: For this course, we’ll mostly use the structural representation for simplicity, but keep the 

abstract view in mind — it explains why we can freely add weights, directions, labels, etc.
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Undirected vs Directed Graphs

Definition 3 (Undirected Graph) :  In an 

undirected graph, edges are unordered pairs:

𝐸 ⊆ (𝑉
2

) = {{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑉 , 𝑢 ≠ 𝑣}

The edge {𝑢, 𝑣} connects 𝑢 and 𝑣 symmetrically.

𝑎 𝑏

𝑐 𝑑

Undirected

Models: Mutual relationships (friendships, 

two-way roads, chemical bonds)

Definition 4 (Directed Graph) :  In a directed 

graph (digraph), edges are ordered pairs:

𝐸 ⊆ 𝑉 × 𝑉

The edge (𝑢, 𝑣) goes from 𝑢 to 𝑣.

𝑎 𝑏

𝑐 𝑑

Directed

Models: One-way relationships (follows, 

one-way streets, dependencies, function calls)
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Simple Graphs, Multigraphs, and Pseudographs

Definition 5 :

• A simple graph has no loops (edges from a vertex to itself) and no multi-edges 

(multiple edges between the same pair of vertices).

• A multigraph allows multi-edges but no loops.

• A pseudograph allows both loops and multi-edges.

Abstract view: In the function-based approach, these distinctions are natural:

• Simple: the “ends” function is injective (different edges → different endpoint pairs)

• Multigraph: “ends” can be non-injective; multiple edges map to the same {𝑢, 𝑣}
• Loops: “ends” can map an edge to a singleton {𝑣} (or begin(𝑒) = end(𝑒))

Note :  Unless otherwise stated, “graph” means simple undirected graph in this course.

𝑎 𝑏

𝑐

Simple

𝑎 𝑏

𝑐

Multigraph

𝑎 𝑏

𝑐

Pseudograph
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Special Graphs

Definition 6 :

• Null graph: no vertices (𝑉 = ∅)

• Trivial graph: single vertex, no edges (|𝑉 | = 1, 𝐸 = ∅)

• Empty graph 𝐾𝑛: 𝑛 vertices, no edges

• Complete graph 𝐾𝑛: 𝑛 vertices, all pairs connected

• Cycle 𝐶𝑛: 𝑛 vertices in a cycle

• Path 𝑃𝑛: 𝑛 vertices in a line

Example :

𝐾4 (empty) 𝐾4 (complete) 𝐶4 (cycle) 𝑃4 (path)

Theorem 1 :  The complete graph 𝐾𝑛 has exactly (𝑛
2 ) = 𝑛(𝑛−1)

2  edges.
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Adjacency and Incidence

Definition 7 :

• Two vertices 𝑢 and 𝑣 are adjacent if there is an edge between them: {𝑢, 𝑣} ∈ 𝐸.

• An edge 𝑒 is incident to vertex 𝑣 if 𝑣 is an endpoint of 𝑒.

• The neighborhood of 𝑣 is 𝑁(𝑣) = {𝑢 ∈ 𝑉 | {𝑢, 𝑣} ∈ 𝐸}.

Example :

𝑎 𝑏 𝑐

𝑑 𝑒

• 𝑎 and 𝑏 are adjacent

• 𝑎 and 𝑐 are not adjacent

• Edge {𝑎, 𝑏} is incident to 𝑎 and 𝑏
• 𝑁(𝑏) = {𝑎, 𝑐, 𝑑, 𝑒}
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Degree of a Vertex

Definition 8 :  The degree of a vertex 𝑣, denoted deg(𝑣), is the number of edges incident to 𝑣.

• 𝛿(𝐺) = min𝑣∈𝑉 deg(𝑣) is the minimum degree

• Δ(𝐺) = max𝑣∈𝑉 deg(𝑣) is the maximum degree

Theorem 2 (Handshaking Lemma):  For any graph 𝐺 = ⟨𝑉 , 𝐸⟩:

∑
𝑣∈𝑉

deg(𝑣) = 2 |𝐸|

Proof :  Each edge contributes exactly 2 to the sum of degrees (once for each endpoint). □

Corollary: The number of vertices with odd degree is always even.
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Degree Sequences

Definition 9 :  The degree sequence of a graph is the list of vertex degrees in non-increasing order.

Example :

𝑎 𝑏 𝑐

𝑑 𝑒

Degrees: deg(𝑎) = 1, deg(𝑏) = 4, deg(𝑐) = 1, deg(𝑑) = 2, deg(𝑒) = 2

Degree sequence: (4, 2, 2, 1, 1)

Question: Given a sequence of integers, can we determine if it’s the degree sequence of some graph?

This is the graph realization problem.
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Regular Graphs

Definition 10 :  A graph is 𝑟-regular if every vertex has degree 𝑟:

∀𝑣 ∈ 𝑉 : deg(𝑣) = 𝑟

Example :

2-regular

(cycle 𝐶4)

3-regular

(complete 𝐾4)

2-regular

(cycle 𝐶5)

2-regular

(complete 𝐾3)
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Graph Representations: Adjacency Matrix

Definition 11 :  The adjacency matrix 𝐴 of a graph 𝐺 with 𝑛 vertices is an 𝑛 × 𝑛 matrix where:

𝐴𝑖𝑗 = {1 if {𝑣𝑖, 𝑣𝑗} ∈ 𝐸
0 otherwise

Example :

1 2

34

𝐴 =

(




0
1
1
1

1
0
1
0

1
1
0
1

1
0
1
0)




Properties: For undirected graphs, 𝐴 is symmetric. The diagonal is all zeros for simple graphs.

17 / 89



Graph Representations: Adjacency List

Definition 12 :  The adjacency list representation stores, for each vertex 𝑣, a list of its neighbors 𝑁(𝑣).

Example :

1 2

34

Vertex Neighbors

1 2, 3, 4
2 1, 3
3 1, 2, 4
4 1, 3

Space complexity: Adjacency matrix uses 𝑂(𝑛2), adjacency list uses 𝑂(𝑛 + 𝑚) where 𝑚 = |𝐸|.
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Subgraphs

Definition 13 :  A graph 𝐻 = ⟨𝑉 ′, 𝐸′⟩ is a subgraph of 𝐺 = ⟨𝑉 , 𝐸⟩, denoted 𝐻 ⊆ 𝐺, if

𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸

Definition 14 :

• A spanning subgraph includes all vertices: 𝑉 ′ = 𝑉 .

• An induced subgraph 𝐺[𝑆] on vertex set 𝑆 ⊆ 𝑉  includes all edges between vertices in 𝑆:

𝐸′ = {{𝑢, 𝑣} ∈ 𝐸 | 𝑢, 𝑣 ∈ 𝑆}

Example :
𝑎 𝑏

𝑐𝑑

𝑎 𝑏

𝑐𝑑

𝑎 𝑏

𝑐

Original 𝐺 Spanning subgraph Induced 𝐺[{𝑎, 𝑏, 𝑐}]
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Graph Isomorphism

Definition 15 :  Graphs 𝐺1 = ⟨𝑉1, 𝐸1⟩ and 𝐺2 = ⟨𝑉2, 𝐸2⟩ are isomorphic, written 𝐺1 ≃ 𝐺2, if there 

exists a bijection 𝜑 : 𝑉1 → 𝑉2 that preserves adjacency:

{𝑢, 𝑣} ∈ 𝐸1 ⟺ {𝜑(𝑢), 𝜑(𝑣)} ∈ 𝐸2

Intuition: Isomorphic graphs are “the same graph” with different vertex labels. They have identical 

structure.
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Graph Isomorphism [2]

Example :

1 2

34

𝑎

𝑏

𝑐

𝑑

Both graphs are isomorphic to 𝐶4. The bijection 𝜑 : 1 ↦ 𝑎, 2 ↦ 𝑏, 3 ↦ 𝑐, 4 ↦ 𝑑 preserves adjacency.

Computational mystery: Graph isomorphism is in NP but not known to be NP-complete or in P.

In 2015, Babai showed it’s in quasipolynomial time — a major breakthrough, but the exact complexity 

remains open.
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Summary: Graph Basics

Core concepts:

• A graph 𝐺 = (𝑉 , 𝐸) is a pair of vertices and 

edges connecting them

• Directed vs undirected; simple graphs vs 

multigraphs vs pseudographs

• Degree deg(𝑣) counts edges incident to 𝑣; 

Handshaking Lemma: ∑ deg(𝑣) = 2|𝐸|
• Special graphs: Complete 𝐾𝑛, cycle 𝐶𝑛, 

path 𝑃𝑛, bipartite 𝐾𝑚,𝑛, hypercube 𝑄𝑛

Coming up: Paths, connectivity, trees, 

bipartite graphs, matchings, Eulerian and 

Hamiltonian cycles, planarity, and coloring.

Graph representations:

• Adjacency matrix: 𝑛 × 𝑛 matrix, good for 

dense graphs, 𝑂(𝑛2) space

• Adjacency list: list of neighbors per vertex, 

good for sparse graphs, 𝑂(𝑛 + 𝑚) space

Structural concepts:

• Subgraph: subset of vertices/edges; induced 

subgraph: includes all edges between chosen 

vertices

• Graph isomorphism: bijection preserving 

adjacency — graphs are “the same” up to 

relabeling
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Paths and Connectivity



Walks, Trails, and Paths

Definition 16 :  A walk in a graph is an alternating sequence of vertices and edges:

𝑣0, 𝑒1, 𝑣1, 𝑒2, 𝑣2, …, 𝑒𝑘, 𝑣𝑘

where each edge 𝑒𝑖 = {𝑣𝑖−1, 𝑣𝑖}.

• A trail is a walk with distinct edges.

• A path is a walk with distinct vertices (hence distinct edges).

Type Vertices repeat? Edges repeat? Closed version

Walk Yes ✓ Yes ✓ Closed walk

Trail Yes ✓ No ✗ Circuit

Path No ✗ No ✗ Cycle

Note :  A walk/trail/path is closed if it starts and ends at the same vertex.
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Length and Distance

Definition 17 :  The length of a walk (trail, path) is the number of edges in it.

Definition 18 :  The distance dist(𝑢, 𝑣) between vertices 𝑢 and 𝑣 is the length of the shortest path from 

𝑢 to 𝑣.

If no path exists, we write dist(𝑢, 𝑣) = ∞.

Example :

𝑎 𝑏 𝑐

𝑑 𝑒

• dist(𝑎, 𝑏) = 1
• dist(𝑎, 𝑐) = 2
• dist(𝑎, 𝑒) = 2
• Path 𝑎-𝑏-𝑐 has length 2

• Trail 𝑎-𝑑-𝑏-𝑐-𝑒-𝑑 has length 5
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Eccentricity, Radius, and Diameter

Definition 19 :

• Eccentricity of vertex 𝑣: ecc(𝑣) = max𝑢∈𝑉 dist(𝑣, 𝑢)
• Radius of graph: rad(𝐺) = min𝑣∈𝑉 ecc(𝑣)
• Diameter of graph: diam(𝐺) = max𝑣∈𝑉 ecc(𝑣)
• Center of graph: center(𝐺) = {𝑣 ∈ 𝑉 | ecc(𝑣) = rad(𝐺)}

Example :

𝑎 𝑏 𝑐 𝑑

Path graph 𝑃4:

• ecc(𝑎) = ecc(𝑑) = 3
• ecc(𝑏) = ecc(𝑐) = 2
• rad(𝐺) = 2, diam(𝐺) = 3
• center(𝐺) = {𝑏, 𝑐}

Theorem 3 :  For any connected graph 𝐺: rad(𝐺) ≤ diam(𝐺) ≤ 2 ⋅ rad(𝐺)
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Connectivity

Definition 20 :  Two vertices 𝑢 and 𝑣 in an undirected graph 𝐺 are connected if 𝐺 contains a path from 

𝑢 to 𝑣. Otherwise, they are disconnected.

Definition 21 :  A graph 𝐺 is connected if every pair of vertices in 𝐺 is connected (i.e., there exists a 

path between any two vertices).

A graph that is not connected is called disconnected.

Note :

• A graph with a single vertex is connected (vacuously).

• An edgeless graph with two or more vertices is disconnected.
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Connected Components

Definition 22 :  A connected component of 𝐺 is a maximal connected subgraph.

Example :

𝑎 𝑏

𝑐

𝑑 𝑒 𝑓

This graph has 3 connected components: {𝑎, 𝑏, 𝑐}, {𝑑, 𝑒}, and {𝑓}.

Key insight: “Being in the same connected component” is an equivalence relation on vertices.
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Connectivity in Directed Graphs

Definition 23 :  A directed graph 𝐺 is:

• Weakly connected if replacing all directed edges with undirected produces a connected graph.

• Unilaterally connected (or semiconnected) if for every pair of vertices 𝑢, 𝑣, there is a directed path 

from 𝑢 to 𝑣 or from 𝑣 to 𝑢 (or both).

• Strongly connected if for every pair of vertices 𝑢, 𝑣, there is a directed path from 𝑢 to 𝑣 and from 

𝑣 to 𝑢.

Example :
𝑎 𝑏

𝑐

𝑎 𝑏

𝑐

𝑎 𝑏

𝑐

Strongly connected

𝑎 → 𝑏 → 𝑐 → 𝑎
Unilaterally connected

𝑎 → 𝑏, 𝑎 → 𝑐, 𝑏 → 𝑐
Weakly connected

No path 𝑎 ⇝ 𝑐
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Strongly Connected Components

Definition 24 :  A strongly connected component (SCC) of a digraph is a maximal strongly connected 

subgraph.

Condensation graph: If we contract each SCC to a single vertex, the result is a DAG (directed acyclic 

graph). This is called the condensation of 𝐺.

Algorithms: SCCs can be found in 𝑂(𝑛 + 𝑚) time using Kosaraju’s algorithm or Tarjan’s algorithm 

(both based on DFS).
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Girth

Definition 25 :  The girth of a graph 𝐺 is the length of the shortest cycle in 𝐺.

If 𝐺 has no cycles (is acyclic), we say girth(𝐺) = ∞.

Example :

girth(𝐾3) = 3 girth(𝐶4) = 4 girth(𝑃4) = ∞
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Trees and Forests



Trees: Definition

Definition 26 :  A tree is a connected acyclic graph.

A forest is an acyclic graph (a disjoint union of trees).

Example :

A tree A forest (3 trees)
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Characterizations of Trees

Theorem 4 :  For a graph 𝐺 with 𝑛 vertices, the following are equivalent:

1. 𝐺 is a tree (connected and acyclic)

2. 𝐺 is connected with exactly 𝑛 − 1 edges

3. 𝐺 is acyclic with exactly 𝑛 − 1 edges

4. Any two vertices are connected by a unique path

5. 𝐺 is minimally connected: removing any edge disconnects it

6. 𝐺 is maximally acyclic: adding any edge creates a cycle

Why trees matter? Trees appear everywhere — file systems, parse trees, decision trees, spanning 

trees for network design. Their simple structure makes them amenable to recursive algorithms.
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Rooted Trees

Definition 27 :  A rooted tree is a tree with one designated vertex called the root.

In a rooted tree:

• The parent of 𝑣 is the neighbor of 𝑣 on the path to the root

• The children of 𝑣 are the other neighbors of 𝑣
• A leaf is a vertex with no children

• An internal vertex has at least one child

Example :
root

𝑎 𝑏

𝑐 𝑑 𝑒

• Root has children 𝑎, 𝑏
• Leaves: 𝑐, 𝑑, 𝑒
• Internal vertices: root, 𝑎, 𝑏
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Spanning Trees

Definition 28 :  A spanning tree of a connected graph 𝐺 is a spanning subgraph that is a tree.

Theorem 5 :  Every connected graph has at least one spanning tree.

Example :

𝑎 𝑏

𝑐𝑑

𝑎 𝑏

𝑐𝑑

Original graph A spanning tree

Application: Finding minimum spanning trees (MST) is fundamental in network design.
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Cayley’s Formula

Theorem 6 (Cayley’s Formula) :  The number of labeled trees on 𝑛 vertices is exactly 𝑛𝑛−2.

Example :

• 𝑛 = 2: 20 = 1 tree (just one edge)

• 𝑛 = 3: 31 = 3 trees (three ways to pick the center)

• 𝑛 = 4: 42 = 16 trees

• 𝑛 = 5: 53 = 125 trees

Cayley’s formula has many beautiful proofs. The most constructive uses Prüfer sequences — a bijection 

between labeled trees on [𝑛] and sequences in [𝑛]𝑛−2.

Why 𝑛𝑛−2? Each of the 𝑛 − 2 positions in a Prüfer sequence can be any of 𝑛 vertices.

The encoding is reversible, establishing the bijection.
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Prüfer Sequences

Definition 29 :  A Prüfer sequence is a unique encoding of a labeled tree on 𝑛 vertices as a sequence of 

𝑛 − 2 labels.

Encoding algorithm:

1. Find the leaf with the smallest label

2. Add its neighbor’s label to the sequence

3. Remove the leaf from the tree

4. Repeat until 2 vertices remain

Example :  Tree: 1-3-4-2, 3-5

Encoding: Remove 1 (neighbor 3), remove 2 (neighbor 4), remove 5 (neighbor 3).

Prüfer sequence: (3, 4, 3)
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Bipartite Graphs



Definition of Bipartite Graphs

Definition 30 :  A graph 𝐺 = ⟨𝑉 , 𝐸⟩ is bipartite if its vertices can be partitioned into two disjoint sets 

𝑉 = 𝑋 ⊔ 𝑌  such that every edge connects a vertex in 𝑋 to a vertex in 𝑌 .

We write 𝐺 = ⟨𝑋 ∪ 𝑌 , 𝐸⟩ or 𝐺 = (𝑋, 𝑌 , 𝐸).

Example :

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2

Bipartite Not bipartite

(contains triangle)
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Characterization of Bipartite Graphs

Theorem 7 :  A graph is bipartite if and only if it contains no odd-length cycles.

Proof (Sketch) :  (⇒) In a bipartite graph, any walk alternates between 𝑋 and 𝑌 , so every cycle has even 

length.

(⇐) If no odd cycles exist, 2-color by BFS: pick any vertex, color it blue, color all neighbors green, color 

their neighbors blue, etc. No conflicts arise. □

Bipartiteness can be checked in 𝑂(𝑛 + 𝑚) time using BFS/DFS.

This is one of the few natural graph properties that admits efficient recognition.

Note: Checking if a graph is 3-colorable is NP-complete, yet 2-colorable (bipartite) is linear time!
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Complete Bipartite Graphs

Definition 31 :  The complete bipartite graph 𝐾𝑚,𝑛 has parts of sizes 𝑚 and 𝑛, with every vertex in one 

part adjacent to every vertex in the other.

Example :

𝐾2,1 𝐾2,2 𝐾3,2

Note :  𝐾𝑚,𝑛 has 𝑚 + 𝑛 vertices and 𝑚 ⋅ 𝑛 edges.
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Matchings and Covers



Matchings

Definition 32 :  A matching 𝑀 ⊆ 𝐸 is a set of pairwise non-adjacent edges (no two edges share a 

vertex).

Definition 33 :

• A matching is maximal if no edge can be added to it.

• A matching is maximum if it has the largest possible size.

• A perfect matching covers all vertices.

Example :

Matching

(not maximal)

Maximum

(perfect)

Maximal

(not maximum)
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Hall’s Marriage Theorem

Definition 34 :  Let 𝐺 = ⟨𝑋 ∪ 𝑌 , 𝐸⟩ be a bipartite graph. For a subset 𝑆 ⊆ 𝑋, define the neighborhood 

of 𝑆:

𝑁(𝑆) = {𝑦 ∈ 𝑌 | ∃𝑥 ∈ 𝑆 : {𝑥, 𝑦} ∈ 𝐸}

Theorem 8 (Hall’s Marriage Theorem (Hall, 1935)) :  A bipartite graph 𝐺 = ⟨𝑋 ∪ 𝑌 , 𝐸⟩ has a matching 

that saturates 𝑋 (i.e., every vertex in 𝑋 is matched) if and only if:

∀𝑆 ⊆ 𝑋 : |𝑁(𝑆)| ≥ |𝑆|

This is called Hall’s condition or the marriage condition.
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Examples: Hall’s Condition

Why “Marriage”? Think of 𝑋 as people seeking partners and 𝑌  as potential partners. Each person in 

𝑋 knows some people in 𝑌  (edges). Can everyone in 𝑋 find a distinct partner? Only if no group of 𝑘 

people collectively knows fewer than 𝑘 partners.

Example :

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2

Satisfies Hall’s Condition

Every subset 𝑆 has |𝑁(𝑆)| ≥ |𝑆|.
Perfect matching exists.

Violates Hall’s Condition

𝑆 = {𝑥1, 𝑥2, 𝑥3} has 𝑁(𝑆) = {𝑦1, 𝑦2}.

Since |𝑁(𝑆)| = 2 < 3 = |𝑆|, no matching saturates 𝑋.
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Proof of Hall’s Theorem

We prove both directions.

Direction (⇒): If a matching saturating 𝑋 exists, then Hall’s condition holds.

Proof :  Let 𝑀  be a matching that saturates 𝑋. For any 𝑆 ⊆ 𝑋:

• Each vertex in 𝑆 is matched to a distinct vertex in 𝑌  (by definition of matching).

• Let 𝑀(𝑆) be the set of partners of 𝑆 under 𝑀 . Then |𝑀(𝑆)| = |𝑆|.
• Since every partner is a neighbor, 𝑀(𝑆) ⊆ 𝑁(𝑆).
• Therefore: |𝑁(𝑆)| ≥ |𝑀(𝑆)| = |𝑆|. □

Direction (⇐): If Hall’s condition holds, then a matching saturating 𝑋 exists.

This is the interesting direction. We use strong induction on 𝑛 = |𝑋|.

47 / 89



Proof (Sufficiency): Base & Strategy

Base Case (𝑛 = 1): If 𝑋 = {𝑥}, Hall’s condition gives |𝑁({𝑥})| ≥ 1, so 𝑥 has a neighbor 𝑦. The edge 

{𝑥, 𝑦} is a matching.

Inductive Hypothesis: Assume the theorem holds for all bipartite graphs with |𝑋| < 𝑛.

Inductive Step: Consider 𝐺 with |𝑋| = 𝑛 ≥ 2. We split into two cases:

• Case 1: Every proper subset 𝑆 has surplus neighbors: |𝑁(𝑆)| ≥ |𝑆| + 1.

• Case 2: Some proper subset 𝑆 is tight: |𝑁(𝑆)| = |𝑆|.
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Proof: Case 1 (Surplus)

Case 1: For all ∅ ≠ 𝑆 ⊊ 𝑋, we have |𝑁(𝑆)| ≥ |𝑆| + 1.

Strategy: Match an arbitrary edge, then use induction on the smaller graph.

1. Pick any edge {𝑥, 𝑦} ∈ 𝐸 (exists because 𝑋 ≠ ∅ and Hall’s condition ensures connectivity).

2. Remove both endpoints: let 𝐺′ = 𝐺 − {𝑥, 𝑦} and 𝑋′ = 𝑋 ∖ 𝑥.

3. Verify Hall’s condition in 𝐺′: Let 𝑆′ ⊆ 𝑋′ be arbitrary.

• In 𝐺, we have |𝑁𝐺(𝑆′)| ≥ |𝑆′| + 1 (since 𝑆′ ⊊ 𝑋).

• Removing 𝑦 from 𝑌  reduces |𝑁(𝑆′)| by at most 1.

• So |𝑁{𝐺′}(𝑆′)| ≥ |𝑁𝐺(𝑆′)| − 1 ≥ (|𝑆′| + 1) − 1 = |𝑆′|.
4. By induction, 𝐺′ has a matching 𝑀 ′ saturating 𝑋′.

5. Then 𝑀 = 𝑀 ′ ∪ {{𝑥, 𝑦}} saturates 𝑋.
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Proof: Case 2 (Tight Subset)

Case 2: There exists ∅ ≠ 𝑆0 ⊊ 𝑋 such that |𝑁(𝑆0)| = |𝑆0|.

Strategy: Match 𝑆0 independently, then match the rest.

1. Match 𝑆0: The induced subgraph 𝐺[𝑆0 ∪ 𝑁(𝑆0)] satisfies Hall’s condition (inherited from 𝐺). Since 

|𝑆0| < 𝑛, by induction there exists a matching 𝑀1 saturating 𝑆0.

2. Match the remainder: Let 𝐺′ = 𝐺 − 𝑆0 − 𝑁(𝑆0) and 𝑋′ = 𝑋 ∖ 𝑆0. We verify Hall’s condition for 

𝐺′. Let 𝐴 ⊆ 𝑋′ be arbitrary.

• In 𝐺: |𝑁𝐺(𝐴∪𝑆0)| ≥ |𝐴 ∪ 𝑆0| = |𝐴| + |𝑆0| (Hall’s condition).

• But 𝑁𝐺(𝐴∪𝑆0) = 𝑁𝐺(𝐴) ∪ 𝑁𝐺(𝑆0) = 𝑁𝐺(𝐴) ∪ 𝑁(𝑆0) (disjoint by construction).

• So |𝑁𝐺(𝐴)| + |𝑁(𝑆0)| ≥ |𝐴| + |𝑆0|.
• Since |𝑁(𝑆0)| = |𝑆0|, we get |𝑁𝐺(𝐴)| ≥ |𝐴|.
• In 𝐺′, the neighbors of 𝐴 are 𝑁{𝐺′}(𝐴) = 𝑁𝐺(𝐴) ∖ 𝑁(𝑆0), but vertices in 𝑁𝐺(𝐴) were not in 𝑁(𝑆0) 

(otherwise contradiction). So |𝑁{𝐺′}(𝐴)| = |𝑁𝐺(𝐴)| ≥ |𝐴|.

3. By induction, 𝐺′ has a matching 𝑀2 saturating 𝑋′.

4. Then 𝑀 = 𝑀1 ∪ 𝑀2 saturates 𝑋.
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Vertex and Edge Covers

Definition 35 :  A vertex cover 𝑅 ⊆ 𝑉  is a set of vertices such that every edge has at least one endpoint 

in 𝑅.

Definition 36 :  An edge cover 𝐹 ⊆ 𝐸 is a set of edges such that every vertex is incident to at least one 

edge in 𝐹 .

Example :

Vertex cover {𝑎, 𝑐} Edge cover {{𝑎, 𝑏}, {𝑐, 𝑑}}
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König’s Theorem

Theorem 9 (König’s Theorem):  In a bipartite graph:

𝜈(𝐺) = 𝜏(𝐺)

where 𝜈(𝐺) is the size of a maximum matching and 𝜏(𝐺) is the size of a minimum vertex cover.

Key insight: This equality does not hold for general graphs! In a triangle 𝐾3: 𝜈 = 1 but 𝜏 = 2.

Connection: König’s theorem follows from the LP duality of matching and vertex cover. It also 

follows from the Max-Flow Min-Cut theorem on the associated network.
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König’s Theorem [2]

Theorem 10 :  In any graph without isolated vertices:

|minimum vertex cover| + |maximum stable set| = |𝑉 |

|minimum edge cover| + |maximum matching| = |𝑉 |
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Stable Sets (Independent Sets)

Definition 37 :  A stable set (or independent set) 𝑆 ⊆ 𝑉  is a set of pairwise non-adjacent vertices.

Example :

The green vertices {𝑎, 𝑐} form a stable set — no edges between them.

Complement relationship: 𝑆 is a stable set in 𝐺 ⟺ 𝑆 is a clique in 𝐺.
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Connectivity Theory



Cut Vertices and Bridges

Definition 38 :  A cut vertex (or articulation point) is a vertex whose removal increases the number of 

connected components.

Definition 39 :  A bridge (or cut edge) is an edge whose removal increases the number of connected 

components.

Example :

𝑎 𝑏

𝑐

𝑑

𝑒 𝑓

• Cut vertices: 𝑏, 𝑒
• Bridge: edge {𝑒, 𝑓}
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Separators and Cuts

Definition 40 :  For vertices 𝑢, 𝑣 ∈ 𝑉 , a 𝑢-𝑣 separator (or 𝑢-𝑣 vertex cut) is a set 𝑆 ⊆ 𝑉 ∖ {𝑢, 𝑣} such 

that 𝑢 and 𝑣 are in different components of 𝐺 − 𝑆.

Definition 41 :  A 𝑢-𝑣 edge cut is a set 𝐹 ⊆ 𝐸 such that 𝑢 and 𝑣 are in different components of 𝐺 − 𝐹 .

Example :

𝑢

𝑎

𝑏

𝑐

𝑑

𝑣

𝑆 = {𝑎, 𝑏} is a 𝑢-𝑣 separator. 𝑆′ = {𝑐, 𝑑} is also a 𝑢-𝑣 separator.
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Vertex and Edge Connectivity

Definition 42 :  The vertex connectivity 𝜅(𝐺) is the minimum size of a vertex set 𝑆 whose removal 

disconnects 𝐺 or makes it trivial (single vertex).

Equivalently: 𝜅(𝐺) = min𝑢,𝑣{minimum 𝑢-𝑣 separator size} over all non-adjacent 𝑢, 𝑣.

Definition 43 :  The edge connectivity 𝜆(𝐺) is the minimum size of an edge set 𝐹  whose removal 

disconnects 𝐺.

Equivalently: 𝜆(𝐺) = min𝑢,𝑣{minimum 𝑢-𝑣 edge cut size} over all 𝑢 ≠ 𝑣.

For complete graphs 𝐾𝑛: we define 𝜅(𝐾𝑛) = 𝑛 − 1 (need to remove all but one vertex).
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𝑘-Connectivity

Definition 44 :  A graph 𝐺 is 𝑘-vertex-connected (or simply 𝑘-connected) if 𝜅(𝐺) ≥ 𝑘.

Equivalently: 𝐺 has more than 𝑘 vertices, and 𝐺 − 𝑆 is connected for every set 𝑆 with |𝑆| < 𝑘.

Definition 45 :  A graph 𝐺 is 𝑘-edge-connected if 𝜆(𝐺) ≥ 𝑘.

Equivalently: 𝐺 − 𝐹  is connected for every edge set 𝐹  with |𝐹 | < 𝑘.

Example :

• 𝐾𝑛 is (𝑛 − 1)-connected (both vertex and edge).

• 𝐶𝑛 (cycle) is 2-connected and 2-edge-connected.

• A tree with 𝑛 ≥ 2 vertices has 𝜅 = 𝜆 = 1 (every edge is a bridge).
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Whitney’s Inequality

Theorem 11 (Whitney’s Inequality) :  For any graph 𝐺:

𝜅(𝐺) ≤ 𝜆(𝐺) ≤ 𝛿(𝐺)

where 𝛿(𝐺) is the minimum degree.

Proof :

• 𝜆(𝐺) ≤ 𝛿(𝐺): Removing all edges incident to a minimum-degree vertex disconnects it.

• 𝜅(𝐺) ≤ 𝜆(𝐺): Given a minimum edge cut 𝐹 , for each edge in 𝐹  pick one endpoint on the “smaller side”. 

This gives a vertex separator of size ≤ |𝐹 |. □

When are they equal? For 𝑘-regular graphs with high girth, often 𝜅 = 𝜆 = 𝑘. For example, the 

Petersen graph has 𝜅 = 𝜆 = 𝛿 = 3.
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Menger’s Theorem

Theorem 12 (Menger’s Theorem (Vertex Form)) :  Let 𝑢, 𝑣 be non-adjacent vertices in 𝐺. Then:

max{number of internally vertex-disjoint 𝑢-𝑣 paths} = min{|𝑆| : 𝑆 is a 𝑢-𝑣 separator}

Theorem 13 (Menger’s Theorem (Edge Form)) :  For any distinct vertices 𝑢, 𝑣 in 𝐺:

max{number of edge-disjoint 𝑢-𝑣 paths} = min{|𝐹 | : 𝐹 is a 𝑢-𝑣 edge cut}

Menger’s theorem is equivalent to the Max-Flow Min-Cut theorem with unit capacities.

The “flow” (disjoint paths) and “cut” (separators) are dual notions.
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Menger’s Theorem: Corollaries

Theorem 14 (Global Vertex Connectivity) :  A graph 𝐺 is 𝑘-connected if and only if every pair of 

distinct vertices is connected by at least 𝑘 internally vertex-disjoint paths.

Theorem 15 (Global Edge Connectivity) :  A graph 𝐺 is 𝑘-edge-connected if and only if every pair of 

distinct vertices is connected by at least 𝑘 edge-disjoint paths.

Intuition: High connectivity means many “independent routes” between any two vertices. Failure of 

a few vertices/edges cannot disconnect the graph.
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Blocks (2-Connected Components)

Definition 46 :  A block of a graph 𝐺 is a maximal connected subgraph with no cut vertex (i.e., 

maximal 2-connected subgraph, or a bridge, or an isolated vertex).

Note :

• A 2-connected graph is its own single block.

• Every edge belongs to exactly one block.

• Blocks can share at most one vertex — and that vertex is a cut vertex.

Example :

Three blocks: blue triangle, green pentagon, orange bridge. Purple = cut vertices.
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Block-Cut Tree

Definition 47 :  The block-cut tree (or BC-tree) of a connected graph 𝐺 is a bipartite tree 𝑇  where:

• One part contains a node for each block of 𝐺.

• The other part contains a node for each cut vertex of 𝐺.

• A block-node 𝐵 is adjacent to a cut-vertex-node 𝑣 iff 𝑣 ∈ 𝐵.

Example :

𝑎 𝑏
𝑐

𝑑
𝑒

Graph 𝐺

𝐵1 𝑏 𝐵2 𝑐 𝐵3

Block-Cut Tree

Applications: The block-cut tree decomposes 𝐺 into 2-connected pieces. Many problems can be 

solved by dynamic programming on this tree.
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Islands (2-Edge-Connected Components)

Definition 48 :  An island (or 2-edge-connected component) is a maximal subgraph with no bridges.

Equivalently: vertices 𝑢 and 𝑣 are in the same island iff they lie on a common cycle.

Note :

• Islands are separated by bridges.

• Every vertex belongs to exactly one island.

• Unlike blocks, islands partition the vertex set (not just edges).
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Blocks vs Islands

Example :

𝑎 𝑏

𝑐

𝑑 𝑒

𝑓

𝑎 𝑏

𝑐

𝑑 𝑒

𝑓

Islands

Blue and green are 2-edge-connected components.

Orange = bridge.

Blocks

Blue triangle, green triangle, orange bridge.

Purple = cut vertices 𝑏 and 𝑑.

Key difference:

• Blocks = 2-vertex-connectivity: no cut vertices within a block.

• Islands = 2-edge-connectivity: no bridges within an island.

Blocks may share cut vertices; islands partition vertices.

66 / 89



Bridge Tree

Definition 49 :  The bridge tree (or island tree) of a connected graph 𝐺 is obtained by contracting each 

island to a single vertex. The edges of this tree are exactly the bridges of 𝐺.

Analogy:

• Block-cut tree: decomposition by cut vertices into blocks.

• Bridge tree: decomposition by bridges into islands.

Theorem 16 :  A graph is 2-edge-connected iff its bridge tree is a single vertex (no bridges).

A graph is 2-vertex-connected iff its block-cut tree has a single block node.
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Eulerian and Hamiltonian Graphs



Eulerian Paths and Circuits

Definition 50 :

• An Eulerian trail is a trail that visits every edge exactly once.

• An Eulerian circuit is a closed Eulerian trail.

• A graph is Eulerian if it has an Eulerian circuit.

Theorem 17 (Euler’s Theorem):  A connected graph has an Eulerian circuit if and only if every vertex 

has even degree.

A connected graph has an Eulerian trail (but not circuit) if and only if exactly two vertices have odd 

degree.

Example :

Eulerian

(all degrees even)

Has Eulerian trail
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Hamiltonian Paths and Cycles

Definition 51 :

• A Hamiltonian path visits every vertex exactly once.

• A Hamiltonian cycle is a cycle that visits every vertex exactly once.

• A graph is Hamiltonian if it has a Hamiltonian cycle.

Warning: Unlike Eulerian graphs, there is no simple characterization of Hamiltonian graphs!

Determining if a graph is Hamiltonian is NP-complete.
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Sufficient Conditions for Hamiltonicity

Theorem 18 (Ore’s Theorem):  If 𝐺 has 𝑛 ≥ 3 vertices and for every pair of non-adjacent vertices 𝑢, 𝑣:

deg(𝑢) + deg(𝑣) ≥ 𝑛

then 𝐺 is Hamiltonian.

Theorem 19 (Dirac’s Theorem):  If 𝐺 has 𝑛 ≥ 3 vertices and 𝛿(𝐺) ≥ 𝑛
2 , then 𝐺 is Hamiltonian.
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Eulerian vs Hamiltonian: Summary

Eulerian Hamiltonian

Visits Every edge once Every vertex once

Characterization Degree condition NP-complete to decide

Algorithm 𝑂(𝑚) — Hierholzer’s Exponential (backtracking)

Named after Euler (1736) Hamilton (1857)

Historical note: Hamilton sold a puzzle (“Icosian game”) based on finding Hamiltonian cycles on a 

dodecahedron graph.

The dodecahedral graph has exactly 30 distinct Hamiltonian cycles.
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Planar Graphs



Planar Graphs: Definition

Definition 52 :  A graph is planar if it can be drawn in the plane without edge crossings.

A plane graph is a specific planar embedding (drawing) of a planar graph.

Example :

𝐾4 with crossings 𝐾4 planar embedding

𝐾4 is planar — it can be redrawn without crossings.
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Faces and Euler’s Formula

Definition 53 :  A face of a plane graph is a connected region bounded by edges. The unbounded 

region is the outer face (or infinite face).

Theorem 20 (Euler’s Polyhedron Formula) :  For any connected plane graph with 𝑛 vertices, 𝑚 edges, 

and 𝑓  faces:

𝑛 − 𝑚 + 𝑓 = 2

Deep insight: The quantity 𝑛 − 𝑚 + 𝑓  is called the Euler characteristic. It equals 2 for any surface 

homeomorphic to a sphere. For a torus, it equals 0. This connects graph theory to topology!

Example : • Vertices: 𝑛 = 4
• Edges: 𝑚 = 5
• Faces: 𝑓 = 3 (2 inner + 1 outer)

Check: 4 − 5 + 3 = 2 ✓ 75 / 89



Consequences of Euler’s Formula

Theorem 21 :  For any simple planar graph with 𝑛 ≥ 3 vertices and 𝑚 edges:

𝑚 ≤ 3𝑛 − 6

Proof :  Each face has ≥ 3 edges on its boundary, and each edge borders at most 2 faces. So 3𝑓 ≤ 2𝑚, 

giving 𝑓 ≤ 2𝑚
3 .

By Euler’s formula: 2 = 𝑛 − 𝑚 + 𝑓 ≤ 𝑛 − 𝑚 + 2𝑚
3 = 𝑛 − 𝑚

3 . Therefore 𝑚 ≤ 3𝑛 − 6. □

Theorem 22 :  For any simple planar bipartite graph with 𝑛 ≥ 3 vertices:

𝑚 ≤ 2𝑛 − 4

Corollary: 𝐾5 (with 10 edges but 3 ⋅ 5 − 6 = 9) and 𝐾3,3 (with 9 edges but 2 ⋅ 6 − 4 = 8) are not 

planar.

76 / 89



Kuratowski’s Theorem

Theorem 23 (Kuratowski’s Theorem):  A graph is planar if and only if it contains no subdivision of 𝐾5 

or 𝐾3,3 as a subgraph.

Definition 54 :  A subdivision of a graph 𝐺 is obtained by replacing edges with paths.

Example :

𝐾5 (not planar) 𝐾3,3 (not planar)
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Graph Coloring



Vertex Coloring

Definition 55 :  A (proper) vertex coloring of a graph assigns colors to vertices such that adjacent 

vertices receive different colors.

Definition 56 :  A graph is 𝑘-colorable if it has a proper coloring using at most 𝑘 colors.

The chromatic number 𝜒(𝐺) is the minimum 𝑘 such that 𝐺 is 𝑘-colorable.

Example :

This graph is 3-colorable. Is 𝜒(𝐺) = 3?
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Chromatic Number: Bounds

Theorem 24 :  For any graph 𝐺:

𝜔(𝐺) ≤ 𝜒(𝐺) ≤ Δ(𝐺) + 1

where 𝜔(𝐺) is the clique number and Δ(𝐺) is the maximum degree.

Proof (Lower bound) :  A clique of size 𝑘 needs 𝑘 different colors. □

Theorem 25 (Brooks’ Theorem):  For any connected graph 𝐺 that is not a complete graph or an odd 

cycle:

𝜒(𝐺) ≤ Δ(𝐺)

Computing 𝜒(𝐺) is NP-hard, but checking 2-colorability is 𝒪︀(𝑛 + 𝑚).
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The Four Color Theorem

Theorem 26 (Four Color Theorem):  Every planar graph is 4-colorable: 𝜒(𝐺) ≤ 4 for all planar 𝐺.

A controversial proof:

• Conjectured in 1852 by Francis Guthrie

• Proved in 1976 by Appel and Haken using a computer

• First major theorem requiring computational verification

• Checked  1,500 “unavoidable” configurations

• Sparked debates: Is a computer-assisted proof a “real” proof?

The dual view: Coloring vertices of a planar graph = coloring regions of a map so adjacent regions 

differ. Every map needs at most 4 colors!n
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Edge Coloring

Definition 57 :  An edge coloring assigns colors to edges such that edges sharing a vertex receive 

different colors.

The chromatic index 𝜒′(𝐺) is the minimum number of colors needed.

Theorem 27 (Vizing’s Theorem):  For any simple graph 𝐺:

Δ(𝐺) ≤ 𝜒′(𝐺) ≤ Δ(𝐺) + 1

Example :

Triangle 𝐾3 needs 3 colors: 𝜒′(𝐾3) = 3 = Δ + 1.
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Cliques and Stable Sets



Cliques

Definition 58 :  A clique is a subset of vertices 𝑄 ⊆ 𝑉  such that every pair of vertices in 𝑄 is adjacent.

Equivalently, 𝑄 induces a complete subgraph.

Definition 59 :

• Clique number 𝜔(𝐺): size of the largest clique

• A clique is maximal if no vertex can be added

• A clique is maximum if it has the largest possible size

Example :

Maximum clique {𝑎, 𝑏, 𝑐} shown in green. 𝜔(𝐺) = 3.
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Ramsey Theory: A Taste

Theorem 28 (Ramsey’s Theorem (simplified)) :  For any positive integers 𝑟 and 𝑠, there exists a number 

𝑅(𝑟, 𝑠) such that any 2-coloring of the edges of 𝐾𝑛 (with 𝑛 ≥ 𝑅(𝑟, 𝑠)) contains either a red 𝐾𝑟 or a 

blue 𝐾𝑠.

Example :  𝑅(3, 3) = 6: Among any 6 people, there are either 3 mutual friends or 3 mutual strangers.

Warning: Computing Ramsey numbers is extremely hard. We know 𝑅(3, 3) = 6, 𝑅(4, 4) = 18, but 

𝑅(5, 5) is unknown!

Famous quote by Erdős: “Suppose aliens invade the earth and threaten to obliterate it in a year’s time 

unless human beings can find 𝑅(5, 5). We could marshal the world’s best minds and fastest 

computers, and within a year we could probably calculate the value. If they digit 𝑅(6, 6), we would 

have no choice but to launch a preemptive attack.”
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Summary and Connections



Graph Theory: Key Concepts

Structural concepts:

• Degree, adjacency, neighborhoods

• Paths, cycles, connectivity

• Trees, spanning trees, forests

• Bipartiteness (2-colorability)

• Planarity (Euler’s formula)

Optimization problems:

• Matchings (Hall, König)

• Vertex/edge covers

• Graph coloring (𝜒, 𝜒′)

• Cliques and stable sets

• Connectivity (Menger)

Foundational theorems:

• Handshaking: ∑ deg(𝑣) = 2𝑚
• Euler’s formula: 𝑛 − 𝑚 + 𝑓 = 2
• Hall’s marriage theorem (matchings ↔ neighborhoods)

• Menger’s theorem (paths ↔ cuts)

• Four color theorem (planarity → 4-colorability)

87 / 89



What’s Next: Flow Networks

Coming up: Network flows unify and generalize graph theory:

• Maximum bipartite matching = max flow in unit network

• Menger’s theorem = max-flow min-cut with unit capacities

• Hall’s condition = flow feasibility check

• König’s theorem = LP duality for bipartite matching

Graph theory provides the foundation for:

• Algorithms (BFS, DFS, shortest paths, MST)

• Network design and optimization

• Formal language theory (automata are directed labeled graphs!)

• Combinatorics, counting, and probabilistic methods
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Exercises

1. Prove that every tree with 𝑛 ≥ 2 vertices has at least 2 leaves.

2. Show that the Petersen graph is not planar.

3. Find the chromatic number of 𝐶𝑛 for all 𝑛 ≥ 3.

4. Prove König’s theorem using Hall’s theorem.

5. For which values of 𝑛 does 𝐾𝑛 have an Eulerian circuit?

6. Find all graphs 𝐺 with 𝜅(𝐺) = 𝜆(𝐺) = 𝛿(𝐺).
7. Prove that every 2-connected graph has no cut vertices.

8. Show that a graph is bipartite iff it has no odd cycles.
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