
Graph Theory
Discrete Math, Spring 2025
Konstantin Chukharev

Graph

Theory

• Graphs & digraphs

• Paths & connectivity

• Trees & spanning trees

• Bipartite graphs

• Matchings & Hall’s theorem

• Planarity & coloring

• Network flows

Languages &

Computation

• Alphabets & formal languages

• Regular expressions

• Finite automata (DFA, NFA)

• Pumping lemma

• Context-free grammars

• Pushdown automata

• Turing machines

• Decidability & complexity

Combinatorics

& Recurrences

• Counting principles

• Permutations & combinations

• Inclusion–exclusion

• Partitions & Stirling numbers

• Generating functions

• Recurrence relations

• Asymptotic analysis

2 / 89

Graph Theory

“The origins of graph theory are humble, even frivolous.”

— Norman L. Biggs

Leonhard Euler Arthur Cayley William Rowan

Hamilton

Karl Menger Philip Hall

Why Graph Theory?

Graphs are everywhere — they model relationships, connections, and structures.

Real-world applications:

• Social networks (friendships)

• Computer networks (routers)

• Transportation (roads, flights)

• Biology (protein interactions)

• Chemistry (molecular bonds)

Computer science applications:

• Data structures (linked lists, trees)

• Algorithms (shortest paths, flows)

• Compilers (dependency graphs)

• Databases (query optimization)

• AI (neural networks, knowledge graphs)

The power of abstraction: By stripping away irrelevant details, graphs let us see the structure of a

problem. The same algorithm that finds the shortest route between cities also finds the fastest path in

a game tree or the most efficient way to schedule tasks.

4 / 89

The Seven Bridges of Königsberg

In 1736, Leonhard Euler solved a famous puzzle:

Can one walk through the city of Königsberg,

crossing each of its seven bridges exactly once?

Euler proved this is impossible — and in doing so,

invented graph theory.

𝐴 𝐵

𝐶

𝐷

Historical note: This problem marks the birth of topology and graph theory as mathematical

disciplines.

5 / 89

Basic Definitions

What is a Graph?

Graphs as models: Graphs are mathematical abstractions for modeling relationships, connections,

and structures. Different kinds of relationships lead to different types of graphs.

Definition 1 (Abstract Approach) : A graph is fundamentally a triple 𝐺 = (𝑉 , 𝐸, 𝐹), where:

• 𝑉 = {𝑣1, 𝑣2, …} is a finite set of abstract vertices (unique objects)

• 𝐸 = {𝑒1, 𝑒2, …} is a finite set of abstract edges (connections)

• 𝐹 is a collection of functions that capture the graph’s structure and semantics

The power of abstraction: Vertices and edges are just labels — the functions 𝐹 define all the

meaning:

• For undirected graphs: 𝐹 = {ends : 𝐸 → (𝑉
2)} maps each edge to its two endpoints

• For directed graphs: 𝐹 = {begin : 𝐸 → 𝑉 , end : 𝐸 → 𝑉 } specify source and target

• For weighted graphs: add weight : 𝐸 → ℝ

7 / 89

What is a Graph? [2]

• For hypergraphs: incidence : 𝐸 → 2𝑉 maps edges to subsets of vertices

• For vertex-labeled graphs: add label : 𝑉 → Σ for some alphabet Σ

Notation :

• 𝑉 (𝐺) denotes the vertex set of graph 𝐺
• 𝐸(𝐺) denotes the edge set of graph 𝐺
• |𝑉 (𝐺)| is the order of 𝐺 (number of vertices)

• |𝐸(𝐺)| is the size of 𝐺 (number of edges)

Bonus: This abstract approach handles multigraphs (parallel edges) and loops naturally — multiple

edges in 𝐸 can map to the same endpoint pair, and a loop edge maps to a singleton set {𝑣} or has

begin(𝑒) = end(𝑒) = 𝑣.

8 / 89

Structural Representation (Alternative Approach)

Definition 2 (Structural Approach) : Instead of abstract edges + functions, we can encode structure

directly into the edge definition:

• Undirected: 𝐸 ⊆ (𝑉
2) (unordered pairs {𝑢, 𝑣})

• Directed: 𝐸 ⊆ 𝑉 × 𝑉 (ordered pairs (𝑢, 𝑣))
• Weighted: 𝐸 ⊆ 𝑉 × 𝑉 × ℝ (triples (𝑢, 𝑣, 𝑤))
• Loops: Include singletons {𝑣} in 𝐸 or allow (𝑣, 𝑣)

Trade-offs:

• Pros: Simpler for basic graphs; closer to programming impl (edge lists, adjacency matrices)

• Cons: Less flexible; need ad-hoc extensions for weighted graphs, hypergraphs, attributes; mixing

structure with semantics

In practice: For this course, we’ll mostly use the structural representation for simplicity, but keep the

abstract view in mind — it explains why we can freely add weights, directions, labels, etc.

9 / 89

Undirected vs Directed Graphs

Definition 3 (Undirected Graph) : In an

undirected graph, edges are unordered pairs:

𝐸 ⊆ (𝑉
2

) = {{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑉 , 𝑢 ≠ 𝑣}

The edge {𝑢, 𝑣} connects 𝑢 and 𝑣 symmetrically.

𝑎 𝑏

𝑐 𝑑

Undirected

Models: Mutual relationships (friendships,

two-way roads, chemical bonds)

Definition 4 (Directed Graph) : In a directed

graph (digraph), edges are ordered pairs:

𝐸 ⊆ 𝑉 × 𝑉

The edge (𝑢, 𝑣) goes from 𝑢 to 𝑣.

𝑎 𝑏

𝑐 𝑑

Directed

Models: One-way relationships (follows,

one-way streets, dependencies, function calls)

10 / 89

Simple Graphs, Multigraphs, and Pseudographs

Definition 5 :

• A simple graph has no loops (edges from a vertex to itself) and no multi-edges

(multiple edges between the same pair of vertices).

• A multigraph allows multi-edges but no loops.

• A pseudograph allows both loops and multi-edges.

Abstract view: In the function-based approach, these distinctions are natural:

• Simple: the “ends” function is injective (different edges → different endpoint pairs)

• Multigraph: “ends” can be non-injective; multiple edges map to the same {𝑢, 𝑣}
• Loops: “ends” can map an edge to a singleton {𝑣} (or begin(𝑒) = end(𝑒))

Note : Unless otherwise stated, “graph” means simple undirected graph in this course.

𝑎 𝑏

𝑐

Simple

𝑎 𝑏

𝑐

Multigraph

𝑎 𝑏

𝑐

Pseudograph

11 / 89

Special Graphs

Definition 6 :

• Null graph: no vertices (𝑉 = ∅)

• Trivial graph: single vertex, no edges (|𝑉 | = 1, 𝐸 = ∅)

• Empty graph 𝐾𝑛: 𝑛 vertices, no edges

• Complete graph 𝐾𝑛: 𝑛 vertices, all pairs connected

• Cycle 𝐶𝑛: 𝑛 vertices in a cycle

• Path 𝑃𝑛: 𝑛 vertices in a line

Example :

𝐾4 (empty) 𝐾4 (complete) 𝐶4 (cycle) 𝑃4 (path)

Theorem 1 : The complete graph 𝐾𝑛 has exactly (𝑛
2) = 𝑛(𝑛−1)

2 edges.

12 / 89

Adjacency and Incidence

Definition 7 :

• Two vertices 𝑢 and 𝑣 are adjacent if there is an edge between them: {𝑢, 𝑣} ∈ 𝐸.

• An edge 𝑒 is incident to vertex 𝑣 if 𝑣 is an endpoint of 𝑒.

• The neighborhood of 𝑣 is 𝑁(𝑣) = {𝑢 ∈ 𝑉 | {𝑢, 𝑣} ∈ 𝐸}.

Example :

𝑎 𝑏 𝑐

𝑑 𝑒

• 𝑎 and 𝑏 are adjacent

• 𝑎 and 𝑐 are not adjacent

• Edge {𝑎, 𝑏} is incident to 𝑎 and 𝑏
• 𝑁(𝑏) = {𝑎, 𝑐, 𝑑, 𝑒}

13 / 89

Degree of a Vertex

Definition 8 : The degree of a vertex 𝑣, denoted deg(𝑣), is the number of edges incident to 𝑣.

• 𝛿(𝐺) = min𝑣∈𝑉 deg(𝑣) is the minimum degree

• Δ(𝐺) = max𝑣∈𝑉 deg(𝑣) is the maximum degree

Theorem 2 (Handshaking Lemma): For any graph 𝐺 = ⟨𝑉 , 𝐸⟩:

∑
𝑣∈𝑉

deg(𝑣) = 2 |𝐸|

Proof : Each edge contributes exactly 2 to the sum of degrees (once for each endpoint). □

Corollary: The number of vertices with odd degree is always even.

14 / 89

Degree Sequences

Definition 9 : The degree sequence of a graph is the list of vertex degrees in non-increasing order.

Example :

𝑎 𝑏 𝑐

𝑑 𝑒

Degrees: deg(𝑎) = 1, deg(𝑏) = 4, deg(𝑐) = 1, deg(𝑑) = 2, deg(𝑒) = 2

Degree sequence: (4, 2, 2, 1, 1)

Question: Given a sequence of integers, can we determine if it’s the degree sequence of some graph?

This is the graph realization problem.

15 / 89

Regular Graphs

Definition 10 : A graph is 𝑟-regular if every vertex has degree 𝑟:

∀𝑣 ∈ 𝑉 : deg(𝑣) = 𝑟

Example :

2-regular

(cycle 𝐶4)

3-regular

(complete 𝐾4)

2-regular

(cycle 𝐶5)

2-regular

(complete 𝐾3)

16 / 89

Graph Representations: Adjacency Matrix

Definition 11 : The adjacency matrix 𝐴 of a graph 𝐺 with 𝑛 vertices is an 𝑛 × 𝑛 matrix where:

𝐴𝑖𝑗 = {1 if {𝑣𝑖, 𝑣𝑗} ∈ 𝐸
0 otherwise

Example :

1 2

34

𝐴 =

(

0
1
1
1

1
0
1
0

1
1
0
1

1
0
1
0)

Properties: For undirected graphs, 𝐴 is symmetric. The diagonal is all zeros for simple graphs.

17 / 89

Graph Representations: Adjacency List

Definition 12 : The adjacency list representation stores, for each vertex 𝑣, a list of its neighbors 𝑁(𝑣).

Example :

1 2

34

Vertex Neighbors

1 2, 3, 4
2 1, 3
3 1, 2, 4
4 1, 3

Space complexity: Adjacency matrix uses 𝑂(𝑛2), adjacency list uses 𝑂(𝑛 + 𝑚) where 𝑚 = |𝐸|.

18 / 89

Subgraphs

Definition 13 : A graph 𝐻 = ⟨𝑉 ′, 𝐸′⟩ is a subgraph of 𝐺 = ⟨𝑉 , 𝐸⟩, denoted 𝐻 ⊆ 𝐺, if

𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸

Definition 14 :

• A spanning subgraph includes all vertices: 𝑉 ′ = 𝑉 .

• An induced subgraph 𝐺[𝑆] on vertex set 𝑆 ⊆ 𝑉 includes all edges between vertices in 𝑆:

𝐸′ = {{𝑢, 𝑣} ∈ 𝐸 | 𝑢, 𝑣 ∈ 𝑆}

Example :
𝑎 𝑏

𝑐𝑑

𝑎 𝑏

𝑐𝑑

𝑎 𝑏

𝑐

Original 𝐺 Spanning subgraph Induced 𝐺[{𝑎, 𝑏, 𝑐}]
19 / 89

Graph Isomorphism

Definition 15 : Graphs 𝐺1 = ⟨𝑉1, 𝐸1⟩ and 𝐺2 = ⟨𝑉2, 𝐸2⟩ are isomorphic, written 𝐺1 ≃ 𝐺2, if there

exists a bijection 𝜑 : 𝑉1 → 𝑉2 that preserves adjacency:

{𝑢, 𝑣} ∈ 𝐸1 ⟺ {𝜑(𝑢), 𝜑(𝑣)} ∈ 𝐸2

Intuition: Isomorphic graphs are “the same graph” with different vertex labels. They have identical

structure.

20 / 89

Graph Isomorphism [2]

Example :

1 2

34

𝑎

𝑏

𝑐

𝑑

Both graphs are isomorphic to 𝐶4. The bijection 𝜑 : 1 ↦ 𝑎, 2 ↦ 𝑏, 3 ↦ 𝑐, 4 ↦ 𝑑 preserves adjacency.

Computational mystery: Graph isomorphism is in NP but not known to be NP-complete or in P.

In 2015, Babai showed it’s in quasipolynomial time — a major breakthrough, but the exact complexity

remains open.

21 / 89

Summary: Graph Basics

Core concepts:

• A graph 𝐺 = (𝑉 , 𝐸) is a pair of vertices and

edges connecting them

• Directed vs undirected; simple graphs vs

multigraphs vs pseudographs

• Degree deg(𝑣) counts edges incident to 𝑣;

Handshaking Lemma: ∑ deg(𝑣) = 2|𝐸|
• Special graphs: Complete 𝐾𝑛, cycle 𝐶𝑛,

path 𝑃𝑛, bipartite 𝐾𝑚,𝑛, hypercube 𝑄𝑛

Coming up: Paths, connectivity, trees,

bipartite graphs, matchings, Eulerian and

Hamiltonian cycles, planarity, and coloring.

Graph representations:

• Adjacency matrix: 𝑛 × 𝑛 matrix, good for

dense graphs, 𝑂(𝑛2) space

• Adjacency list: list of neighbors per vertex,

good for sparse graphs, 𝑂(𝑛 + 𝑚) space

Structural concepts:

• Subgraph: subset of vertices/edges; induced

subgraph: includes all edges between chosen

vertices

• Graph isomorphism: bijection preserving

adjacency — graphs are “the same” up to

relabeling

22 / 89

Paths and Connectivity

Walks, Trails, and Paths

Definition 16 : A walk in a graph is an alternating sequence of vertices and edges:

𝑣0, 𝑒1, 𝑣1, 𝑒2, 𝑣2, …, 𝑒𝑘, 𝑣𝑘

where each edge 𝑒𝑖 = {𝑣𝑖−1, 𝑣𝑖}.

• A trail is a walk with distinct edges.

• A path is a walk with distinct vertices (hence distinct edges).

Type Vertices repeat? Edges repeat? Closed version

Walk Yes ✓ Yes ✓ Closed walk

Trail Yes ✓ No ✗ Circuit

Path No ✗ No ✗ Cycle

Note : A walk/trail/path is closed if it starts and ends at the same vertex.

24 / 89

Length and Distance

Definition 17 : The length of a walk (trail, path) is the number of edges in it.

Definition 18 : The distance dist(𝑢, 𝑣) between vertices 𝑢 and 𝑣 is the length of the shortest path from

𝑢 to 𝑣.

If no path exists, we write dist(𝑢, 𝑣) = ∞.

Example :

𝑎 𝑏 𝑐

𝑑 𝑒

• dist(𝑎, 𝑏) = 1
• dist(𝑎, 𝑐) = 2
• dist(𝑎, 𝑒) = 2
• Path 𝑎-𝑏-𝑐 has length 2

• Trail 𝑎-𝑑-𝑏-𝑐-𝑒-𝑑 has length 5

25 / 89

Eccentricity, Radius, and Diameter

Definition 19 :

• Eccentricity of vertex 𝑣: ecc(𝑣) = max𝑢∈𝑉 dist(𝑣, 𝑢)
• Radius of graph: rad(𝐺) = min𝑣∈𝑉 ecc(𝑣)
• Diameter of graph: diam(𝐺) = max𝑣∈𝑉 ecc(𝑣)
• Center of graph: center(𝐺) = {𝑣 ∈ 𝑉 | ecc(𝑣) = rad(𝐺)}

Example :

𝑎 𝑏 𝑐 𝑑

Path graph 𝑃4:

• ecc(𝑎) = ecc(𝑑) = 3
• ecc(𝑏) = ecc(𝑐) = 2
• rad(𝐺) = 2, diam(𝐺) = 3
• center(𝐺) = {𝑏, 𝑐}

Theorem 3 : For any connected graph 𝐺: rad(𝐺) ≤ diam(𝐺) ≤ 2 ⋅ rad(𝐺)

26 / 89

Connectivity

Definition 20 : Two vertices 𝑢 and 𝑣 in an undirected graph 𝐺 are connected if 𝐺 contains a path from

𝑢 to 𝑣. Otherwise, they are disconnected.

Definition 21 : A graph 𝐺 is connected if every pair of vertices in 𝐺 is connected (i.e., there exists a

path between any two vertices).

A graph that is not connected is called disconnected.

Note :

• A graph with a single vertex is connected (vacuously).

• An edgeless graph with two or more vertices is disconnected.

27 / 89

Connected Components

Definition 22 : A connected component of 𝐺 is a maximal connected subgraph.

Example :

𝑎 𝑏

𝑐

𝑑 𝑒 𝑓

This graph has 3 connected components: {𝑎, 𝑏, 𝑐}, {𝑑, 𝑒}, and {𝑓}.

Key insight: “Being in the same connected component” is an equivalence relation on vertices.

28 / 89

Connectivity in Directed Graphs

Definition 23 : A directed graph 𝐺 is:

• Weakly connected if replacing all directed edges with undirected produces a connected graph.

• Unilaterally connected (or semiconnected) if for every pair of vertices 𝑢, 𝑣, there is a directed path

from 𝑢 to 𝑣 or from 𝑣 to 𝑢 (or both).

• Strongly connected if for every pair of vertices 𝑢, 𝑣, there is a directed path from 𝑢 to 𝑣 and from

𝑣 to 𝑢.

Example :
𝑎 𝑏

𝑐

𝑎 𝑏

𝑐

𝑎 𝑏

𝑐

Strongly connected

𝑎 → 𝑏 → 𝑐 → 𝑎
Unilaterally connected

𝑎 → 𝑏, 𝑎 → 𝑐, 𝑏 → 𝑐
Weakly connected

No path 𝑎 ⇝ 𝑐

29 / 89

Strongly Connected Components

Definition 24 : A strongly connected component (SCC) of a digraph is a maximal strongly connected

subgraph.

Condensation graph: If we contract each SCC to a single vertex, the result is a DAG (directed acyclic

graph). This is called the condensation of 𝐺.

Algorithms: SCCs can be found in 𝑂(𝑛 + 𝑚) time using Kosaraju’s algorithm or Tarjan’s algorithm

(both based on DFS).

30 / 89

Girth

Definition 25 : The girth of a graph 𝐺 is the length of the shortest cycle in 𝐺.

If 𝐺 has no cycles (is acyclic), we say girth(𝐺) = ∞.

Example :

girth(𝐾3) = 3 girth(𝐶4) = 4 girth(𝑃4) = ∞

31 / 89

Trees and Forests

Trees: Definition

Definition 26 : A tree is a connected acyclic graph.

A forest is an acyclic graph (a disjoint union of trees).

Example :

A tree A forest (3 trees)

33 / 89

Characterizations of Trees

Theorem 4 : For a graph 𝐺 with 𝑛 vertices, the following are equivalent:

1. 𝐺 is a tree (connected and acyclic)

2. 𝐺 is connected with exactly 𝑛 − 1 edges

3. 𝐺 is acyclic with exactly 𝑛 − 1 edges

4. Any two vertices are connected by a unique path

5. 𝐺 is minimally connected: removing any edge disconnects it

6. 𝐺 is maximally acyclic: adding any edge creates a cycle

Why trees matter? Trees appear everywhere — file systems, parse trees, decision trees, spanning

trees for network design. Their simple structure makes them amenable to recursive algorithms.

34 / 89

Rooted Trees

Definition 27 : A rooted tree is a tree with one designated vertex called the root.

In a rooted tree:

• The parent of 𝑣 is the neighbor of 𝑣 on the path to the root

• The children of 𝑣 are the other neighbors of 𝑣
• A leaf is a vertex with no children

• An internal vertex has at least one child

Example :
root

𝑎 𝑏

𝑐 𝑑 𝑒

• Root has children 𝑎, 𝑏
• Leaves: 𝑐, 𝑑, 𝑒
• Internal vertices: root, 𝑎, 𝑏

35 / 89

Spanning Trees

Definition 28 : A spanning tree of a connected graph 𝐺 is a spanning subgraph that is a tree.

Theorem 5 : Every connected graph has at least one spanning tree.

Example :

𝑎 𝑏

𝑐𝑑

𝑎 𝑏

𝑐𝑑

Original graph A spanning tree

Application: Finding minimum spanning trees (MST) is fundamental in network design.

36 / 89

Cayley’s Formula

Theorem 6 (Cayley’s Formula) : The number of labeled trees on 𝑛 vertices is exactly 𝑛𝑛−2.

Example :

• 𝑛 = 2: 20 = 1 tree (just one edge)

• 𝑛 = 3: 31 = 3 trees (three ways to pick the center)

• 𝑛 = 4: 42 = 16 trees

• 𝑛 = 5: 53 = 125 trees

Cayley’s formula has many beautiful proofs. The most constructive uses Prüfer sequences — a bijection

between labeled trees on [𝑛] and sequences in [𝑛]𝑛−2.

Why 𝑛𝑛−2? Each of the 𝑛 − 2 positions in a Prüfer sequence can be any of 𝑛 vertices.

The encoding is reversible, establishing the bijection.

37 / 89

Prüfer Sequences

Definition 29 : A Prüfer sequence is a unique encoding of a labeled tree on 𝑛 vertices as a sequence of

𝑛 − 2 labels.

Encoding algorithm:

1. Find the leaf with the smallest label

2. Add its neighbor’s label to the sequence

3. Remove the leaf from the tree

4. Repeat until 2 vertices remain

Example : Tree: 1-3-4-2, 3-5

Encoding: Remove 1 (neighbor 3), remove 2 (neighbor 4), remove 5 (neighbor 3).

Prüfer sequence: (3, 4, 3)

38 / 89

Bipartite Graphs

Definition of Bipartite Graphs

Definition 30 : A graph 𝐺 = ⟨𝑉 , 𝐸⟩ is bipartite if its vertices can be partitioned into two disjoint sets

𝑉 = 𝑋 ⊔ 𝑌 such that every edge connects a vertex in 𝑋 to a vertex in 𝑌 .

We write 𝐺 = ⟨𝑋 ∪ 𝑌 , 𝐸⟩ or 𝐺 = (𝑋, 𝑌 , 𝐸).

Example :

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2

Bipartite Not bipartite

(contains triangle)

40 / 89

Characterization of Bipartite Graphs

Theorem 7 : A graph is bipartite if and only if it contains no odd-length cycles.

Proof (Sketch) : (⇒) In a bipartite graph, any walk alternates between 𝑋 and 𝑌 , so every cycle has even

length.

(⇐) If no odd cycles exist, 2-color by BFS: pick any vertex, color it blue, color all neighbors green, color

their neighbors blue, etc. No conflicts arise. □

Bipartiteness can be checked in 𝑂(𝑛 + 𝑚) time using BFS/DFS.

This is one of the few natural graph properties that admits efficient recognition.

Note: Checking if a graph is 3-colorable is NP-complete, yet 2-colorable (bipartite) is linear time!

41 / 89

Complete Bipartite Graphs

Definition 31 : The complete bipartite graph 𝐾𝑚,𝑛 has parts of sizes 𝑚 and 𝑛, with every vertex in one

part adjacent to every vertex in the other.

Example :

𝐾2,1 𝐾2,2 𝐾3,2

Note : 𝐾𝑚,𝑛 has 𝑚 + 𝑛 vertices and 𝑚 ⋅ 𝑛 edges.

42 / 89

Matchings and Covers

Matchings

Definition 32 : A matching 𝑀 ⊆ 𝐸 is a set of pairwise non-adjacent edges (no two edges share a

vertex).

Definition 33 :

• A matching is maximal if no edge can be added to it.

• A matching is maximum if it has the largest possible size.

• A perfect matching covers all vertices.

Example :

Matching

(not maximal)

Maximum

(perfect)

Maximal

(not maximum)

44 / 89

Hall’s Marriage Theorem

Definition 34 : Let 𝐺 = ⟨𝑋 ∪ 𝑌 , 𝐸⟩ be a bipartite graph. For a subset 𝑆 ⊆ 𝑋, define the neighborhood

of 𝑆:

𝑁(𝑆) = {𝑦 ∈ 𝑌 | ∃𝑥 ∈ 𝑆 : {𝑥, 𝑦} ∈ 𝐸}

Theorem 8 (Hall’s Marriage Theorem (Hall, 1935)) : A bipartite graph 𝐺 = ⟨𝑋 ∪ 𝑌 , 𝐸⟩ has a matching

that saturates 𝑋 (i.e., every vertex in 𝑋 is matched) if and only if:

∀𝑆 ⊆ 𝑋 : |𝑁(𝑆)| ≥ |𝑆|

This is called Hall’s condition or the marriage condition.

45 / 89

Examples: Hall’s Condition

Why “Marriage”? Think of 𝑋 as people seeking partners and 𝑌 as potential partners. Each person in

𝑋 knows some people in 𝑌 (edges). Can everyone in 𝑋 find a distinct partner? Only if no group of 𝑘

people collectively knows fewer than 𝑘 partners.

Example :

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2

Satisfies Hall’s Condition

Every subset 𝑆 has |𝑁(𝑆)| ≥ |𝑆|.
Perfect matching exists.

Violates Hall’s Condition

𝑆 = {𝑥1, 𝑥2, 𝑥3} has 𝑁(𝑆) = {𝑦1, 𝑦2}.

Since |𝑁(𝑆)| = 2 < 3 = |𝑆|, no matching saturates 𝑋.

46 / 89

Proof of Hall’s Theorem

We prove both directions.

Direction (⇒): If a matching saturating 𝑋 exists, then Hall’s condition holds.

Proof : Let 𝑀 be a matching that saturates 𝑋. For any 𝑆 ⊆ 𝑋:

• Each vertex in 𝑆 is matched to a distinct vertex in 𝑌 (by definition of matching).

• Let 𝑀(𝑆) be the set of partners of 𝑆 under 𝑀 . Then |𝑀(𝑆)| = |𝑆|.
• Since every partner is a neighbor, 𝑀(𝑆) ⊆ 𝑁(𝑆).
• Therefore: |𝑁(𝑆)| ≥ |𝑀(𝑆)| = |𝑆|. □

Direction (⇐): If Hall’s condition holds, then a matching saturating 𝑋 exists.

This is the interesting direction. We use strong induction on 𝑛 = |𝑋|.

47 / 89

Proof (Sufficiency): Base & Strategy

Base Case (𝑛 = 1): If 𝑋 = {𝑥}, Hall’s condition gives |𝑁({𝑥})| ≥ 1, so 𝑥 has a neighbor 𝑦. The edge

{𝑥, 𝑦} is a matching.

Inductive Hypothesis: Assume the theorem holds for all bipartite graphs with |𝑋| < 𝑛.

Inductive Step: Consider 𝐺 with |𝑋| = 𝑛 ≥ 2. We split into two cases:

• Case 1: Every proper subset 𝑆 has surplus neighbors: |𝑁(𝑆)| ≥ |𝑆| + 1.

• Case 2: Some proper subset 𝑆 is tight: |𝑁(𝑆)| = |𝑆|.

48 / 89

Proof: Case 1 (Surplus)

Case 1: For all ∅ ≠ 𝑆 ⊊ 𝑋, we have |𝑁(𝑆)| ≥ |𝑆| + 1.

Strategy: Match an arbitrary edge, then use induction on the smaller graph.

1. Pick any edge {𝑥, 𝑦} ∈ 𝐸 (exists because 𝑋 ≠ ∅ and Hall’s condition ensures connectivity).

2. Remove both endpoints: let 𝐺′ = 𝐺 − {𝑥, 𝑦} and 𝑋′ = 𝑋 ∖ 𝑥.

3. Verify Hall’s condition in 𝐺′: Let 𝑆′ ⊆ 𝑋′ be arbitrary.

• In 𝐺, we have |𝑁𝐺(𝑆′)| ≥ |𝑆′| + 1 (since 𝑆′ ⊊ 𝑋).

• Removing 𝑦 from 𝑌 reduces |𝑁(𝑆′)| by at most 1.

• So |𝑁{𝐺′}(𝑆′)| ≥ |𝑁𝐺(𝑆′)| − 1 ≥ (|𝑆′| + 1) − 1 = |𝑆′|.
4. By induction, 𝐺′ has a matching 𝑀 ′ saturating 𝑋′.

5. Then 𝑀 = 𝑀 ′ ∪ {{𝑥, 𝑦}} saturates 𝑋.

49 / 89

Proof: Case 2 (Tight Subset)

Case 2: There exists ∅ ≠ 𝑆0 ⊊ 𝑋 such that |𝑁(𝑆0)| = |𝑆0|.

Strategy: Match 𝑆0 independently, then match the rest.

1. Match 𝑆0: The induced subgraph 𝐺[𝑆0 ∪ 𝑁(𝑆0)] satisfies Hall’s condition (inherited from 𝐺). Since

|𝑆0| < 𝑛, by induction there exists a matching 𝑀1 saturating 𝑆0.

2. Match the remainder: Let 𝐺′ = 𝐺 − 𝑆0 − 𝑁(𝑆0) and 𝑋′ = 𝑋 ∖ 𝑆0. We verify Hall’s condition for

𝐺′. Let 𝐴 ⊆ 𝑋′ be arbitrary.

• In 𝐺: |𝑁𝐺(𝐴∪𝑆0)| ≥ |𝐴 ∪ 𝑆0| = |𝐴| + |𝑆0| (Hall’s condition).

• But 𝑁𝐺(𝐴∪𝑆0) = 𝑁𝐺(𝐴) ∪ 𝑁𝐺(𝑆0) = 𝑁𝐺(𝐴) ∪ 𝑁(𝑆0) (disjoint by construction).

• So |𝑁𝐺(𝐴)| + |𝑁(𝑆0)| ≥ |𝐴| + |𝑆0|.
• Since |𝑁(𝑆0)| = |𝑆0|, we get |𝑁𝐺(𝐴)| ≥ |𝐴|.
• In 𝐺′, the neighbors of 𝐴 are 𝑁{𝐺′}(𝐴) = 𝑁𝐺(𝐴) ∖ 𝑁(𝑆0), but vertices in 𝑁𝐺(𝐴) were not in 𝑁(𝑆0)

(otherwise contradiction). So |𝑁{𝐺′}(𝐴)| = |𝑁𝐺(𝐴)| ≥ |𝐴|.

3. By induction, 𝐺′ has a matching 𝑀2 saturating 𝑋′.

4. Then 𝑀 = 𝑀1 ∪ 𝑀2 saturates 𝑋.

50 / 89

Vertex and Edge Covers

Definition 35 : A vertex cover 𝑅 ⊆ 𝑉 is a set of vertices such that every edge has at least one endpoint

in 𝑅.

Definition 36 : An edge cover 𝐹 ⊆ 𝐸 is a set of edges such that every vertex is incident to at least one

edge in 𝐹 .

Example :

Vertex cover {𝑎, 𝑐} Edge cover {{𝑎, 𝑏}, {𝑐, 𝑑}}

51 / 89

König’s Theorem

Theorem 9 (König’s Theorem): In a bipartite graph:

𝜈(𝐺) = 𝜏(𝐺)

where 𝜈(𝐺) is the size of a maximum matching and 𝜏(𝐺) is the size of a minimum vertex cover.

Key insight: This equality does not hold for general graphs! In a triangle 𝐾3: 𝜈 = 1 but 𝜏 = 2.

Connection: König’s theorem follows from the LP duality of matching and vertex cover. It also

follows from the Max-Flow Min-Cut theorem on the associated network.

52 / 89

König’s Theorem [2]

Theorem 10 : In any graph without isolated vertices:

|minimum vertex cover| + |maximum stable set| = |𝑉 |

|minimum edge cover| + |maximum matching| = |𝑉 |

53 / 89

Stable Sets (Independent Sets)

Definition 37 : A stable set (or independent set) 𝑆 ⊆ 𝑉 is a set of pairwise non-adjacent vertices.

Example :

The green vertices {𝑎, 𝑐} form a stable set — no edges between them.

Complement relationship: 𝑆 is a stable set in 𝐺 ⟺ 𝑆 is a clique in 𝐺.

54 / 89

Connectivity Theory

Cut Vertices and Bridges

Definition 38 : A cut vertex (or articulation point) is a vertex whose removal increases the number of

connected components.

Definition 39 : A bridge (or cut edge) is an edge whose removal increases the number of connected

components.

Example :

𝑎 𝑏

𝑐

𝑑

𝑒 𝑓

• Cut vertices: 𝑏, 𝑒
• Bridge: edge {𝑒, 𝑓}

56 / 89

Separators and Cuts

Definition 40 : For vertices 𝑢, 𝑣 ∈ 𝑉 , a 𝑢-𝑣 separator (or 𝑢-𝑣 vertex cut) is a set 𝑆 ⊆ 𝑉 ∖ {𝑢, 𝑣} such

that 𝑢 and 𝑣 are in different components of 𝐺 − 𝑆.

Definition 41 : A 𝑢-𝑣 edge cut is a set 𝐹 ⊆ 𝐸 such that 𝑢 and 𝑣 are in different components of 𝐺 − 𝐹 .

Example :

𝑢

𝑎

𝑏

𝑐

𝑑

𝑣

𝑆 = {𝑎, 𝑏} is a 𝑢-𝑣 separator. 𝑆′ = {𝑐, 𝑑} is also a 𝑢-𝑣 separator.

57 / 89

Vertex and Edge Connectivity

Definition 42 : The vertex connectivity 𝜅(𝐺) is the minimum size of a vertex set 𝑆 whose removal

disconnects 𝐺 or makes it trivial (single vertex).

Equivalently: 𝜅(𝐺) = min𝑢,𝑣{minimum 𝑢-𝑣 separator size} over all non-adjacent 𝑢, 𝑣.

Definition 43 : The edge connectivity 𝜆(𝐺) is the minimum size of an edge set 𝐹 whose removal

disconnects 𝐺.

Equivalently: 𝜆(𝐺) = min𝑢,𝑣{minimum 𝑢-𝑣 edge cut size} over all 𝑢 ≠ 𝑣.

For complete graphs 𝐾𝑛: we define 𝜅(𝐾𝑛) = 𝑛 − 1 (need to remove all but one vertex).

58 / 89

𝑘-Connectivity

Definition 44 : A graph 𝐺 is 𝑘-vertex-connected (or simply 𝑘-connected) if 𝜅(𝐺) ≥ 𝑘.

Equivalently: 𝐺 has more than 𝑘 vertices, and 𝐺 − 𝑆 is connected for every set 𝑆 with |𝑆| < 𝑘.

Definition 45 : A graph 𝐺 is 𝑘-edge-connected if 𝜆(𝐺) ≥ 𝑘.

Equivalently: 𝐺 − 𝐹 is connected for every edge set 𝐹 with |𝐹 | < 𝑘.

Example :

• 𝐾𝑛 is (𝑛 − 1)-connected (both vertex and edge).

• 𝐶𝑛 (cycle) is 2-connected and 2-edge-connected.

• A tree with 𝑛 ≥ 2 vertices has 𝜅 = 𝜆 = 1 (every edge is a bridge).

59 / 89

Whitney’s Inequality

Theorem 11 (Whitney’s Inequality) : For any graph 𝐺:

𝜅(𝐺) ≤ 𝜆(𝐺) ≤ 𝛿(𝐺)

where 𝛿(𝐺) is the minimum degree.

Proof :

• 𝜆(𝐺) ≤ 𝛿(𝐺): Removing all edges incident to a minimum-degree vertex disconnects it.

• 𝜅(𝐺) ≤ 𝜆(𝐺): Given a minimum edge cut 𝐹 , for each edge in 𝐹 pick one endpoint on the “smaller side”.

This gives a vertex separator of size ≤ |𝐹 |. □

When are they equal? For 𝑘-regular graphs with high girth, often 𝜅 = 𝜆 = 𝑘. For example, the

Petersen graph has 𝜅 = 𝜆 = 𝛿 = 3.

60 / 89

Menger’s Theorem

Theorem 12 (Menger’s Theorem (Vertex Form)) : Let 𝑢, 𝑣 be non-adjacent vertices in 𝐺. Then:

max{number of internally vertex-disjoint 𝑢-𝑣 paths} = min{|𝑆| : 𝑆 is a 𝑢-𝑣 separator}

Theorem 13 (Menger’s Theorem (Edge Form)) : For any distinct vertices 𝑢, 𝑣 in 𝐺:

max{number of edge-disjoint 𝑢-𝑣 paths} = min{|𝐹 | : 𝐹 is a 𝑢-𝑣 edge cut}

Menger’s theorem is equivalent to the Max-Flow Min-Cut theorem with unit capacities.

The “flow” (disjoint paths) and “cut” (separators) are dual notions.

61 / 89

Menger’s Theorem: Corollaries

Theorem 14 (Global Vertex Connectivity) : A graph 𝐺 is 𝑘-connected if and only if every pair of

distinct vertices is connected by at least 𝑘 internally vertex-disjoint paths.

Theorem 15 (Global Edge Connectivity) : A graph 𝐺 is 𝑘-edge-connected if and only if every pair of

distinct vertices is connected by at least 𝑘 edge-disjoint paths.

Intuition: High connectivity means many “independent routes” between any two vertices. Failure of

a few vertices/edges cannot disconnect the graph.

62 / 89

Blocks (2-Connected Components)

Definition 46 : A block of a graph 𝐺 is a maximal connected subgraph with no cut vertex (i.e.,

maximal 2-connected subgraph, or a bridge, or an isolated vertex).

Note :

• A 2-connected graph is its own single block.

• Every edge belongs to exactly one block.

• Blocks can share at most one vertex — and that vertex is a cut vertex.

Example :

Three blocks: blue triangle, green pentagon, orange bridge. Purple = cut vertices.

63 / 89

Block-Cut Tree

Definition 47 : The block-cut tree (or BC-tree) of a connected graph 𝐺 is a bipartite tree 𝑇 where:

• One part contains a node for each block of 𝐺.

• The other part contains a node for each cut vertex of 𝐺.

• A block-node 𝐵 is adjacent to a cut-vertex-node 𝑣 iff 𝑣 ∈ 𝐵.

Example :

𝑎 𝑏
𝑐

𝑑
𝑒

Graph 𝐺

𝐵1 𝑏 𝐵2 𝑐 𝐵3

Block-Cut Tree

Applications: The block-cut tree decomposes 𝐺 into 2-connected pieces. Many problems can be

solved by dynamic programming on this tree.

64 / 89

Islands (2-Edge-Connected Components)

Definition 48 : An island (or 2-edge-connected component) is a maximal subgraph with no bridges.

Equivalently: vertices 𝑢 and 𝑣 are in the same island iff they lie on a common cycle.

Note :

• Islands are separated by bridges.

• Every vertex belongs to exactly one island.

• Unlike blocks, islands partition the vertex set (not just edges).

65 / 89

Blocks vs Islands

Example :

𝑎 𝑏

𝑐

𝑑 𝑒

𝑓

𝑎 𝑏

𝑐

𝑑 𝑒

𝑓

Islands

Blue and green are 2-edge-connected components.

Orange = bridge.

Blocks

Blue triangle, green triangle, orange bridge.

Purple = cut vertices 𝑏 and 𝑑.

Key difference:

• Blocks = 2-vertex-connectivity: no cut vertices within a block.

• Islands = 2-edge-connectivity: no bridges within an island.

Blocks may share cut vertices; islands partition vertices.

66 / 89

Bridge Tree

Definition 49 : The bridge tree (or island tree) of a connected graph 𝐺 is obtained by contracting each

island to a single vertex. The edges of this tree are exactly the bridges of 𝐺.

Analogy:

• Block-cut tree: decomposition by cut vertices into blocks.

• Bridge tree: decomposition by bridges into islands.

Theorem 16 : A graph is 2-edge-connected iff its bridge tree is a single vertex (no bridges).

A graph is 2-vertex-connected iff its block-cut tree has a single block node.

67 / 89

Eulerian and Hamiltonian Graphs

Eulerian Paths and Circuits

Definition 50 :

• An Eulerian trail is a trail that visits every edge exactly once.

• An Eulerian circuit is a closed Eulerian trail.

• A graph is Eulerian if it has an Eulerian circuit.

Theorem 17 (Euler’s Theorem): A connected graph has an Eulerian circuit if and only if every vertex

has even degree.

A connected graph has an Eulerian trail (but not circuit) if and only if exactly two vertices have odd

degree.

Example :

Eulerian

(all degrees even)

Has Eulerian trail

(2 odd vertices) 69 / 89

Hamiltonian Paths and Cycles

Definition 51 :

• A Hamiltonian path visits every vertex exactly once.

• A Hamiltonian cycle is a cycle that visits every vertex exactly once.

• A graph is Hamiltonian if it has a Hamiltonian cycle.

Warning: Unlike Eulerian graphs, there is no simple characterization of Hamiltonian graphs!

Determining if a graph is Hamiltonian is NP-complete.

70 / 89

Sufficient Conditions for Hamiltonicity

Theorem 18 (Ore’s Theorem): If 𝐺 has 𝑛 ≥ 3 vertices and for every pair of non-adjacent vertices 𝑢, 𝑣:

deg(𝑢) + deg(𝑣) ≥ 𝑛

then 𝐺 is Hamiltonian.

Theorem 19 (Dirac’s Theorem): If 𝐺 has 𝑛 ≥ 3 vertices and 𝛿(𝐺) ≥ 𝑛
2 , then 𝐺 is Hamiltonian.

71 / 89

Eulerian vs Hamiltonian: Summary

Eulerian Hamiltonian

Visits Every edge once Every vertex once

Characterization Degree condition NP-complete to decide

Algorithm 𝑂(𝑚) — Hierholzer’s Exponential (backtracking)

Named after Euler (1736) Hamilton (1857)

Historical note: Hamilton sold a puzzle (“Icosian game”) based on finding Hamiltonian cycles on a

dodecahedron graph.

The dodecahedral graph has exactly 30 distinct Hamiltonian cycles.

72 / 89

Planar Graphs

Planar Graphs: Definition

Definition 52 : A graph is planar if it can be drawn in the plane without edge crossings.

A plane graph is a specific planar embedding (drawing) of a planar graph.

Example :

𝐾4 with crossings 𝐾4 planar embedding

𝐾4 is planar — it can be redrawn without crossings.

74 / 89

Faces and Euler’s Formula

Definition 53 : A face of a plane graph is a connected region bounded by edges. The unbounded

region is the outer face (or infinite face).

Theorem 20 (Euler’s Polyhedron Formula) : For any connected plane graph with 𝑛 vertices, 𝑚 edges,

and 𝑓 faces:

𝑛 − 𝑚 + 𝑓 = 2

Deep insight: The quantity 𝑛 − 𝑚 + 𝑓 is called the Euler characteristic. It equals 2 for any surface

homeomorphic to a sphere. For a torus, it equals 0. This connects graph theory to topology!

Example : • Vertices: 𝑛 = 4
• Edges: 𝑚 = 5
• Faces: 𝑓 = 3 (2 inner + 1 outer)

Check: 4 − 5 + 3 = 2 ✓ 75 / 89

Consequences of Euler’s Formula

Theorem 21 : For any simple planar graph with 𝑛 ≥ 3 vertices and 𝑚 edges:

𝑚 ≤ 3𝑛 − 6

Proof : Each face has ≥ 3 edges on its boundary, and each edge borders at most 2 faces. So 3𝑓 ≤ 2𝑚,

giving 𝑓 ≤ 2𝑚
3 .

By Euler’s formula: 2 = 𝑛 − 𝑚 + 𝑓 ≤ 𝑛 − 𝑚 + 2𝑚
3 = 𝑛 − 𝑚

3 . Therefore 𝑚 ≤ 3𝑛 − 6. □

Theorem 22 : For any simple planar bipartite graph with 𝑛 ≥ 3 vertices:

𝑚 ≤ 2𝑛 − 4

Corollary: 𝐾5 (with 10 edges but 3 ⋅ 5 − 6 = 9) and 𝐾3,3 (with 9 edges but 2 ⋅ 6 − 4 = 8) are not

planar.

76 / 89

Kuratowski’s Theorem

Theorem 23 (Kuratowski’s Theorem): A graph is planar if and only if it contains no subdivision of 𝐾5

or 𝐾3,3 as a subgraph.

Definition 54 : A subdivision of a graph 𝐺 is obtained by replacing edges with paths.

Example :

𝐾5 (not planar) 𝐾3,3 (not planar)

77 / 89

Graph Coloring

Vertex Coloring

Definition 55 : A (proper) vertex coloring of a graph assigns colors to vertices such that adjacent

vertices receive different colors.

Definition 56 : A graph is 𝑘-colorable if it has a proper coloring using at most 𝑘 colors.

The chromatic number 𝜒(𝐺) is the minimum 𝑘 such that 𝐺 is 𝑘-colorable.

Example :

This graph is 3-colorable. Is 𝜒(𝐺) = 3?

79 / 89

Chromatic Number: Bounds

Theorem 24 : For any graph 𝐺:

𝜔(𝐺) ≤ 𝜒(𝐺) ≤ Δ(𝐺) + 1

where 𝜔(𝐺) is the clique number and Δ(𝐺) is the maximum degree.

Proof (Lower bound) : A clique of size 𝑘 needs 𝑘 different colors. □

Theorem 25 (Brooks’ Theorem): For any connected graph 𝐺 that is not a complete graph or an odd

cycle:

𝜒(𝐺) ≤ Δ(𝐺)

Computing 𝜒(𝐺) is NP-hard, but checking 2-colorability is 𝒪︀(𝑛 + 𝑚).

80 / 89

The Four Color Theorem

Theorem 26 (Four Color Theorem): Every planar graph is 4-colorable: 𝜒(𝐺) ≤ 4 for all planar 𝐺.

A controversial proof:

• Conjectured in 1852 by Francis Guthrie

• Proved in 1976 by Appel and Haken using a computer

• First major theorem requiring computational verification

• Checked 1,500 “unavoidable” configurations

• Sparked debates: Is a computer-assisted proof a “real” proof?

The dual view: Coloring vertices of a planar graph = coloring regions of a map so adjacent regions

differ. Every map needs at most 4 colors!n

81 / 89

Edge Coloring

Definition 57 : An edge coloring assigns colors to edges such that edges sharing a vertex receive

different colors.

The chromatic index 𝜒′(𝐺) is the minimum number of colors needed.

Theorem 27 (Vizing’s Theorem): For any simple graph 𝐺:

Δ(𝐺) ≤ 𝜒′(𝐺) ≤ Δ(𝐺) + 1

Example :

Triangle 𝐾3 needs 3 colors: 𝜒′(𝐾3) = 3 = Δ + 1.

82 / 89

Cliques and Stable Sets

Cliques

Definition 58 : A clique is a subset of vertices 𝑄 ⊆ 𝑉 such that every pair of vertices in 𝑄 is adjacent.

Equivalently, 𝑄 induces a complete subgraph.

Definition 59 :

• Clique number 𝜔(𝐺): size of the largest clique

• A clique is maximal if no vertex can be added

• A clique is maximum if it has the largest possible size

Example :

Maximum clique {𝑎, 𝑏, 𝑐} shown in green. 𝜔(𝐺) = 3.

84 / 89

Ramsey Theory: A Taste

Theorem 28 (Ramsey’s Theorem (simplified)) : For any positive integers 𝑟 and 𝑠, there exists a number

𝑅(𝑟, 𝑠) such that any 2-coloring of the edges of 𝐾𝑛 (with 𝑛 ≥ 𝑅(𝑟, 𝑠)) contains either a red 𝐾𝑟 or a

blue 𝐾𝑠.

Example : 𝑅(3, 3) = 6: Among any 6 people, there are either 3 mutual friends or 3 mutual strangers.

Warning: Computing Ramsey numbers is extremely hard. We know 𝑅(3, 3) = 6, 𝑅(4, 4) = 18, but

𝑅(5, 5) is unknown!

Famous quote by Erdős: “Suppose aliens invade the earth and threaten to obliterate it in a year’s time

unless human beings can find 𝑅(5, 5). We could marshal the world’s best minds and fastest

computers, and within a year we could probably calculate the value. If they digit 𝑅(6, 6), we would

have no choice but to launch a preemptive attack.”

85 / 89

Summary and Connections

Graph Theory: Key Concepts

Structural concepts:

• Degree, adjacency, neighborhoods

• Paths, cycles, connectivity

• Trees, spanning trees, forests

• Bipartiteness (2-colorability)

• Planarity (Euler’s formula)

Optimization problems:

• Matchings (Hall, König)

• Vertex/edge covers

• Graph coloring (𝜒, 𝜒′)

• Cliques and stable sets

• Connectivity (Menger)

Foundational theorems:

• Handshaking: ∑ deg(𝑣) = 2𝑚
• Euler’s formula: 𝑛 − 𝑚 + 𝑓 = 2
• Hall’s marriage theorem (matchings ↔ neighborhoods)

• Menger’s theorem (paths ↔ cuts)

• Four color theorem (planarity → 4-colorability)

87 / 89

What’s Next: Flow Networks

Coming up: Network flows unify and generalize graph theory:

• Maximum bipartite matching = max flow in unit network

• Menger’s theorem = max-flow min-cut with unit capacities

• Hall’s condition = flow feasibility check

• König’s theorem = LP duality for bipartite matching

Graph theory provides the foundation for:

• Algorithms (BFS, DFS, shortest paths, MST)

• Network design and optimization

• Formal language theory (automata are directed labeled graphs!)

• Combinatorics, counting, and probabilistic methods

88 / 89

Exercises

1. Prove that every tree with 𝑛 ≥ 2 vertices has at least 2 leaves.

2. Show that the Petersen graph is not planar.

3. Find the chromatic number of 𝐶𝑛 for all 𝑛 ≥ 3.

4. Prove König’s theorem using Hall’s theorem.

5. For which values of 𝑛 does 𝐾𝑛 have an Eulerian circuit?

6. Find all graphs 𝐺 with 𝜅(𝐺) = 𝜆(𝐺) = 𝛿(𝐺).
7. Prove that every 2-connected graph has no cut vertices.

8. Show that a graph is bipartite iff it has no odd cycles.

89 / 89

	§1 Graph Theory
	 Why Graph Theory?
	 The Seven Bridges of Königsberg

	§2 Basic Definitions
	 What is a Graph?
	 Structural Representation (Alternative Approach)
	 Undirected vs Directed Graphs
	 Simple Graphs, Multigraphs, and Pseudographs
	 Special Graphs
	 Adjacency and Incidence
	 Degree of a Vertex
	 Degree Sequences
	 Regular Graphs
	 Graph Representations: Adjacency Matrix
	 Graph Representations: Adjacency List
	 Subgraphs
	 Graph Isomorphism
	 Summary: Graph Basics

	§3 Paths and Connectivity
	 Walks, Trails, and Paths
	 Length and Distance
	 Eccentricity, Radius, and Diameter
	 Connectivity
	 Connected Components
	 Connectivity in Directed Graphs
	 Strongly Connected Components
	 Girth

	§4 Trees and Forests
	 Trees: Definition
	 Characterizations of Trees
	 Rooted Trees
	 Spanning Trees
	 Cayley's Formula
	 Prüfer Sequences

	§5 Bipartite Graphs
	 Definition of Bipartite Graphs
	 Characterization of Bipartite Graphs
	 Complete Bipartite Graphs

	§6 Matchings and Covers
	 Matchings
	 Hall's Marriage Theorem
	 Examples: Hall's Condition
	 Proof of Hall's Theorem
	 Proof (Sufficiency): Base & Strategy
	 Proof: Case 1 (Surplus)
	 Proof: Case 2 (Tight Subset)
	 Vertex and Edge Covers
	 König's Theorem
	 Stable Sets (Independent Sets)

	§7 Connectivity Theory
	 Cut Vertices and Bridges
	 Separators and Cuts
	 Vertex and Edge Connectivity
	 k-Connectivity
	 Whitney's Inequality
	 Menger's Theorem
	 Menger's Theorem: Corollaries
	 Blocks (2-Connected Components)
	 Block-Cut Tree
	 Islands (2-Edge-Connected Components)
	 Blocks vs Islands
	 Bridge Tree

	§8 Eulerian and Hamiltonian Graphs
	 Eulerian Paths and Circuits
	 Hamiltonian Paths and Cycles
	 Sufficient Conditions for Hamiltonicity
	 Eulerian vs Hamiltonian: Summary

	§9 Planar Graphs
	 Planar Graphs: Definition
	 Faces and Euler's Formula
	 Consequences of Euler's Formula
	 Kuratowski's Theorem

	§10 Graph Coloring
	 Vertex Coloring
	 Chromatic Number: Bounds
	 The Four Color Theorem
	 Edge Coloring

	§11 Cliques and Stable Sets
	 Cliques
	 Ramsey Theory: A Taste

	§12 Summary and Connections
	 Graph Theory: Key Concepts
	 What's Next: Flow Networks
	 Exercises

