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Formal Logic
“Logic is the anatomy of thought.”

— John Locke
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Propositional Logic

Definition 1 :  Logic is the study of valid reasoning.

Definition 2 :  Formal logic is the study of deductively valid inferences or logical truths.

Example :  Modus ponens inference rule:

𝑃
𝑃 → 𝑄
∴ 𝑄

Definition 3 (Propositional Logic) :  The simplest form of logic, dealing with whole statements
(propositions) that can be either true or false.

Also known as sentential logic or zeroth-order logic.
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Syntax: The Language of Logic

Syntax concerns the formal structure of logical expressions — how symbols are arranged according to
grammatical rules, independent of meaning.

Definition 4 :  A propositional language consists of:
• Propositional variables: 𝑃 , 𝑄, 𝑅, … (atomic propositions)
• Logical connectives: ¬, ∧, ∨, →, ⟺
• Punctuation: parentheses for grouping

Definition 5 :  A well-formed formula (WFF) in propositional logic is defined recursively:
• Every propositional variable is a WFF.
• If 𝛼 is a WFF, then ¬𝛼 is a WFF.
• If 𝛼 and 𝛽 are WFFs, then (𝛼 ∧ 𝛽), (𝛼 ∨ 𝛽), (𝛼 → 𝛽), (𝛼 ⟺ 𝛽) are WFFs.
• Nothing else is a WFF.

4 / 65



Semantics: The Meaning of Logic

Semantics concerns the meaning (or interpretation) of logical expressions — how they relate to truth
values and the world.

• Each propositional variable is assigned a truth value: true or false.
• More formally, an interpretation 𝜈 : 𝑉 → 𝔹 assigns truth values (𝔹 = {0, 1}) to variables (atoms) 𝑉 .

Definition 6 :  The truth value (evaluation) of complex formulas is determined recursively:

⟦¬𝛼⟧𝜈 = true iff ⟦𝛼⟧𝜈 = false

⟦𝛼 ∧ 𝛽⟧𝜈 = true iff ⟦𝛼⟧𝜈 = true and ⟦𝛽⟧𝜈 = true

⟦𝛼 ∨ 𝛽⟧𝜈 = true iff ⟦𝛼⟧𝜈 = true or ⟦𝛽⟧𝜈 = true (or both)
⟦𝛼 → 𝛽⟧𝜈 = false iff ⟦𝛼⟧𝜈 = true and ⟦𝛽⟧𝜈 = false

⟦𝛼 ⟺ 𝛽⟧𝜈 = true iff ⟦𝛼⟧𝜈 = ⟦𝛽⟧𝜈
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Truth Tables

Definition 7 :  A truth table systematically lists all possible truth value assignments to propositional
variables and shows the resulting truth values of complex formulas.

Example (Truth Tables for Basic Connectives) :

𝑃 ¬𝑃
true false

false true

𝑃 𝑄 𝑃 ∧ 𝑄 𝑃 ∨ 𝑄
true true true true

true false false true

false true false true

false false false false

𝑃 𝑄 𝑃 → 𝑄 𝑃 ⟺ 𝑄
true true true true

true false false false

false true true false

false false true true
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Semantic Concepts

Definition 8 :  A formula 𝜑 is satisfiable if there exists an interpretation 𝜈 such that ⟦𝜑⟧𝜈 = true.

A formula is unsatisfiable if no such interpretation exists.

Definition 9 :  A formula 𝜑 is a tautology (or valid) if ⟦𝜑⟧𝜈 = true for every interpretation 𝜈.

Notation: ⊨ 𝜑 (read: “𝜑 is valid”).

Definition 10 :  A formula 𝜑 is a contradiction if ⟦𝜑⟧𝜈 = false for every interpretation 𝜈.

Example :
• 𝑃 ∨ ¬𝑃  is a tautology (Law of Excluded Middle)
• 𝑃 ∧ ¬𝑃  is a contradiction
• 𝑃 ∨ 𝑄 is satisfiable but not a tautology
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Logical Equivalence

Definition 11 :  Two formulas 𝛼 and 𝛽 are logically equivalent, written 𝛼 ≡ 𝛽, if they have the same
truth value under every interpretation:

𝛼 ≡ 𝛽 iff ∀𝜈. ⟦𝛼⟧𝜈 = ⟦𝛽⟧𝜈

Example (Important Equivalences) :

De Morgan’s Laws:
• ¬(𝑃 ∧ 𝑄) ≡ ¬𝑃 ∨ ¬𝑄
• ¬(𝑃 ∨ 𝑄) ≡ ¬𝑃 ∧ ¬𝑄

Double Negation:
• ¬¬𝑃 ≡ 𝑃

Implication:
• 𝑃 → 𝑄 ≡ (¬𝑃) ∨ 𝑄

Associativity:
• (𝑃 ∧ 𝑄) ∧ 𝑅 ≡ 𝑃 ∧ (𝑄 ∧ 𝑅)
• (𝑃 ∨ 𝑄) ∨ 𝑅 ≡ 𝑃 ∨ (𝑄 ∨ 𝑅)

Commutativity:
• 𝑃 ∧ 𝑄 ≡ 𝑄 ∧ 𝑃
• 𝑃 ∨ 𝑄 ≡ 𝑄 ∨ 𝑃

Distributivity:
• 𝑃 ∧ (𝑄 ∨ 𝑅) ≡ (𝑃 ∧ 𝑄) ∨ (𝑃 ∧ 𝑅)
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Semantic Entailment

Definition 12 :  A set of formulas Γ semantically entails a formula 𝛼, written Γ ⊨ 𝛼, if every
interpretation that makes all formulas in Γ true also makes 𝛼 true:

Γ ⊨ 𝛼 iff ∀𝜈. (∀𝛽 ∈ Γ. ⟦𝛽⟧𝜈 = true) → ⟦𝛼⟧𝜈 = true

Example :  {𝑃 → 𝑄, 𝑃} ⊨ 𝑄 (this captures modus ponens semantically)

Theorem 1 (Semantic Deduction Theorem):  For any formulas 𝛼 and 𝛽:

{𝛼} ⊨ 𝛽 iff ⊨ 𝛼 → 𝛽
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Normal Forms

Definition 13 :  A literal is either a propositional variable 𝑃  or its negation ¬𝑃 .

Definition 14 :  A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of
literals:

(𝐿1,1 ∨ … ∨ 𝐿1,𝑘1
) ∧ … ∧ (𝐿𝑛,1 ∨ … ∨ 𝐿𝑛,𝑘𝑛

)

Each disjunction (𝐿𝑖,1 ∨ … ∨ 𝐿𝑖,𝑘𝑖
) is called a clause.

Definition 15 :  A formula is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of
literals:

(𝐿1,1 ∧ … ∧ 𝐿1,𝑘1
) ∨ … ∨ (𝐿𝑛,1 ∧ … ∧ 𝐿𝑛,𝑘𝑛

)
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Normal Forms [2]

Theorem 2 (Normal Form Existence) :  Every propositional formula is logically equivalent to a formula
in CNF and to a formula in DNF.

Example :  (𝑃 → 𝑄) ∧ 𝑅

Converting to CNF:
1. Eliminate implications: (¬𝑃 ∨ 𝑄) ∧ 𝑅
2. Already in CNF: (¬𝑃 ∨ 𝑄) ∧ 𝑅

Converting to DNF:
1. Distribute: (¬𝑃 ∧ 𝑅) ∨ (𝑄 ∧ 𝑅)
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Boolean Satisfiability Problem (SAT)

Definition 16 (SAT Problem):  Given a propositional formula 𝜑, determine whether 𝜑 is satisfiable.

Theorem 3 (Cook-Levin Theorem):  SAT is NP-complete.

12 / 65



From Semantics to Syntax

So far we’ve studied semantics — what formulas mean in terms of truth values.

Now we turn to syntax — how to prove formulas using purely symbolic manipulation, without reference
to truth values.

Definition 17 :  A proof system consists of:
• Axioms: formulas assumed to be true
• Inference rules: patterns for deriving new formulas from existing ones

A proof of 𝜑 is a sequence of formulas ending with 𝜑, where each formula is either an axiom or follows
from previous formulas by an inference rule.

Definition 18 (Syntactic Derivability) :  We write Γ ⊢ 𝜑 (read: “Γ proves 𝜑”) if there exists a proof of 𝜑
using axioms and formulas from Γ as premises.
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Natural Deduction

Definition 19 (Natural Deduction) :  A proof system where formulas are derived using introduction and
elimination rules for each logical connective.

Proofs are typically presented in Fitch notation — a structured format showing the logical dependencies.
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Fitch Notation

Fitch notation uses vertical lines and indentation to show proof structure:
• Vertical lines indicate scope of assumptions
• Horizontal lines separate assumptions from conclusions
• Each step is numbered and justified

Example (Fitch Proof Structure) :

1  | P → Q        Premise
2  | P            Premise
   |____________
3  | Q            Modus Ponens 1,2
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Inference Rules for Conjunction
Conjunction Introduction (∧I):

𝛼
𝛽
𝛼 ∧ 𝛽

If we have both 𝛼 and 𝛽, we can conclude 𝛼 ∧ 𝛽.

Conjunction Elimination (∧E):

𝛼 ∧ 𝛽
𝛼

𝛼 ∧ 𝛽
𝛽

From 𝛼 ∧ 𝛽, we can conclude either 𝛼 or 𝛽.
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Inference Rules for Disjunction
Disjunction Introduction (∨I):

𝛼
𝛼 ∨ 𝛽

𝛽
𝛼 ∨ 𝛽

From either 𝛼 or 𝛽, we can conclude 𝛼 ∨ 𝛽.

Disjunction Elimination (∨E):

𝛼 ∨ 𝛽
[𝛼]…𝛾
[𝛽]…𝛾
𝛾

To use 𝛼 ∨ 𝛽, assume each disjunct and show that both
lead to the same conclusion 𝛾.
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Inference Rules for Implication
Implication Introduction (→I):

[𝛼]…𝛽
𝛼 → 𝛽

To prove 𝛼 → 𝛽, assume 𝛼 and derive 𝛽.

This discharges the assumption 𝛼.

Implication Elimination (→E):

𝛼 → 𝛽
𝛼
𝛽

This is modus ponens — the fundamental rule of
reasoning.
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Inference Rules for Negation
Negation Introduction (¬I):

[𝜑]…⊥
¬𝜑

To prove ¬𝜑, assume 𝜑 and derive a contradiction ⊥.

Negation Elimination (¬E):

𝜑
¬𝜑
⊥

From 𝜑 and ¬𝜑, derive contradiction.

Definition 20 :  Contradiction (⊥) is special formula that represents logical inconsistency.

From ⊥, anything can be derived (ex falso quodlibet).
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Additional Rules
Ex Falso Quodlibet (⊥E):

⊥
𝜑

From contradiction, anything follows.

Double Negation Elimination:

¬¬𝜑
𝜑

(Classical logic only)
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Example: Fitch Proof
Example (Proving Contrapositive) :  (𝑃 → 𝑄) ∴ ((¬𝑄) → (¬𝑃))

1  | P → Q                     Premise
   |________________________
2  | | ¬Q                     Assumption
   | |______________________
3  | | | P                   Assumption
4  | | | Q                   →E 1,3
5  | | | ⊥                   ¬E 2,4
   | | |____________________
6  | | ¬P                    ¬I 3-5
   | |______________________
7  | ¬Q → ¬P                 →I 2-6
   |________________________
8  | (P → Q) → (¬Q → ¬P)      →I 1-7
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Derived Rules

Definition 21 :  Derived rules are complex inference patterns that can be proven from basic rules, used
as shortcuts in proofs.

Example (Useful derived rules) :

Modus Tollens:

𝛼 → 𝛽
¬𝛽
¬𝛼

Hypothetical Syllogism:

𝛼 → 𝛽
𝛽 → 𝛾
𝛼 → 𝛾

Proof by Contradiction (Reductio ad Absurdum):

[¬𝜑]…⊥
𝜑
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Soundness and Completeness



Soundness of Natural Deduction

Definition 22 (Soundness) :  A proof system is sound if every syntactically derivable formula is
semantically valid.

If Γ ⊢ 𝜑 then Γ ⊨ 𝜑

Theorem 4 :  Natural deduction for propositional logic is sound.

Proof (sketch) :  By induction on proof structure:

Base case: Axioms and premises are semantically valid by assumption.

Inductive step: Show each inference rule preserves semantic validity:
• If premises are true under interpretation 𝜈, then conclusion is also true under 𝜈
• For example, for ∧I: if ⟦𝛼⟧𝜈 = true and ⟦𝛽⟧𝜈 = true, then ⟦𝛼 ∧ 𝛽⟧𝜈 = true

The proof requires checking all inference rules systematically. □
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Completeness Preview

Definition 23 (Completeness) :  A proof system is complete if every semantically valid formula is
syntactically derivable.

If Γ ⊨ 𝜑 then Γ ⊢ 𝜑

Theorem 5 (Gödel) :  Natural deduction for propositional logic is complete.

Soundness + Completeness = syntactic derivability (⊢) exactly matches semantic entailment (⊨).

Γ ⊢ 𝜑 iff Γ ⊨ 𝜑
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Proof of Completeness
Proof :  We prove the contrapositive: if Γ ⊬ 𝛼, then Γ ⊭ 𝛼.

The strategy is to construct a model (interpretation) that satisfies all formulas in Γ, but falsifies 𝛼.

Step 1: If Γ ⊬ 𝛼, then Γ ∪ {¬𝛼} is consistent (cannot derive ⊥).
Step 2: Extend Γ ∪ {¬𝛼} to a maximal consistent set Δ:

• Δ is consistent (cannot derive ⊥)
• For every formula 𝛽, either 𝛽 ∈ Δ or ¬𝛽 ∈ Δ

Step 3: Define interpretation 𝜈 for atomic propositions 𝑃  by:

𝜈(𝑃 ) = true ⟺ 𝑃 ∈ Δ
Step 4: Show by induction that for all formulas 𝛽:

⟦𝛽⟧𝜈 = true ⟺ 𝛽 ∈ Δ
Step 5: Since ¬𝛼 ∈ Δ, we have ⟦𝛼⟧𝜈 = false. Since Γ ⊆ Δ, we have ⟦𝛾⟧𝜈 = true for all 𝛾 ∈ Γ.

Therefore Γ ⊭ 𝛼. □
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The Completeness Result

Theorem 6 :  For any set of formulas Γ and formula 𝜑:

Γ ⊨ 𝜑 iff Γ ⊢ 𝜑

This establishes the harmony between semantics and syntax in propositional logic.

Practical implications:
• Automated theorem provers are theoretically sound.
• Truth table methods and proof methods are equivalent.
• Proof search is as hard as SAT.
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Categorical Logic
“All men are mortal. Socrates is a man. Therefore, Socrates is mortal.”

— Classical syllogism

A S GB

Aristotle Socrates George Boole



From Propositional to Categorical

Classical propositional logic treats statements as atomic units.

But human reasoning often involves relationships between classes of objects:
• “All birds can fly”
• “Some mammals are aquatic”
• “No reptiles are warm-blooded”

Traditional logic studies these patterns, providing a bridge to modern predicate logic.
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Categorical Propositions

Definition 24 :  A categorical proposition is a statement that asserts or denies a relationship between
two categories (classes) of objects.

Every categorical proposition has:
• Subject term (S): the category being described
• Predicate term (P): the category used in the description
• Quantifier: indicates how much of the subject is included
• Quality: affirmative or negative

Example :  “All politicians are corrupt.”
• Subject: politicians
• Predicate: corrupt people
• Quantifier: all (universal)
• Quality: affirmative
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The Four Standard Forms

Definition 25 :  Traditional logic recognizes four standard forms of categorical propositions:

Form Quantifier Quality Structure Example
A Universal Affirmative All S are P “All cats are mammals”
E Universal Negative No S are P “No fish are mammals”
I Particular Affirmative Some S are P “Some birds are flightless”
O Particular Negative Some S are not P “Some animals are not vertebrates”
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Examples of Categorical Propositions
A (Universal Affirmative):
• All students are hardworking
• Every theorem has a proof
• All prime numbers except 2 are odd

I (Particular Affirmative):
• Some politicians are honest
• Some functions are continuous
• Some equations have multiple solutions

E (Universal Negative):
• No circles are squares
• No valid argument has false premises and true conclusion
• No even number greater than 2 is prime

O (Particular Negative):
• Some students are not prepared
• Some triangles are not right triangles
• Some numbers are not rational
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The Square of Opposition

Definition 26 :  A square of opposition is a diagram showing the logical relationships between A, E, I,
and O propositions with the same subject and predicate terms.

A E

I O

Contraries

Subcontraries

Subalternation

SubalternationCon
tra

dic
tor

ies
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Logical Relationships in the Square

Definition 27 (The Four Relationships) :

Contradictories (A–O, E–I):
• Cannot both be true
• Cannot both be false
• Exactly one must be true

Contraries (A–E):
• Cannot both be true
• Can both be false
• At most one is true

Subcontraries (I–O):
• Cannot both be false
• Can both be true
• At least one is true

Subalternation (A → I, E → O):
• If universal is true, particular is true
• If particular is false, universal is false
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Logical Relationships in the Square [2]
Example :  Given: “All roses are flowers” (A-form, true)

By the square of opposition:
• “No roses are flowers” (E-form) is false (contraries)
• “Some roses are flowers” (I-form) is true (subalternation)
• “Some roses are not flowers” (O-form) is false (contradictories)
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Translation Between Traditional and Modern Logic

Definition 28 :  Categorical propositions can be translated into first-order logic:

Traditional Modern Logic Reading
All S are P ∀𝑥(𝑆(𝑥) → 𝑃(𝑥)) “For all x, if x is S then x is P”
No S are P ∀𝑥(𝑆(𝑥) → ¬𝑃(𝑥)) “For all x, if x is S then x is not P”
Some S are P ∃𝑥(𝑆(𝑥) ∧ 𝑃(𝑥)) “There exists x such that x is S and x is P”
Some S are not P ∃𝑥(𝑆(𝑥) ∧ ¬𝑃(𝑥)) “There exists x such that x is S and x is not P”

Example :  “All students are hardworking” becomes: ∀𝑥(Student(𝑥) → Hardworking(𝑥))

“Some politicians are not honest” becomes: ∃𝑥(Politician(𝑥) ∧ ¬Honest(𝑥))
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The Existential Import Problem

Definition 29 :  A proposition “𝑆 is 𝑃 ” has existential import if it implies the existence of objects
(at least one) in its subject class 𝑆.

The Problem:

Traditional logic (Aristotle) assumes all categorical propositions have existential import.

Modern logic questions this assumption.

Consider: “All unicorns are magical”
• Traditional: Implies unicorns exist (so the statement is false)
• Modern: True vacuously (if there are no unicorns, the implication holds trivially)
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The Existential Import Problem [2]
Example (Impact on the Square) :  In modern logic with empty domains:
• A and E can both be true (if subject class is empty)
• I and O can both be false (if subject class is empty)
• Subalternation fails (A can be true while I is false)

The traditional square of opposition only works when we assume non-empty subject classes.
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Syllogisms: Reasoning with Categories

Definition 30 :  Categorical syllogism is a form of reasoning with three categorical propositions:
• Major premise: contains the predicate of the conclusion
• Minor premise: contains the subject of the conclusion
• Conclusion: derived from the premises

Uses exactly three terms: major, minor, and middle.

Example (Classic syllogism) :

All humans are mortal (Major premise)
Socrates is human (Minor premise)
Therefore, Socrates is mortal (Conclusion)

Terms:
• Major term: mortal (P)
• Minor term: Socrates (S)
• Middle term: human (M)
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Figures and Moods of Syllogisms

Definition 31 :  The figure of a syllogism is determined by the position of the middle term:

Figure 1 Figure 2 Figure 3 Figure 4

M — P
S — M
S — P

P — M
S — M
S — P

M — P
M — S
S — P

P — M
M — S
S — P

Definition 32 :  The mood of a syllogism is the 3-letter sequence of categorical forms (A, E, I, O) of its
three propositions, in order: major premise, minor premise, conclusion.

Example (Barbara (AAA-1)) :

All M are P (A)

40 / 65



Figures and Moods of Syllogisms [2]

All S are M (A)
All S are P (A)

This arguments has mood AAA in figure 1, called “Barbara” — a valid syllogistic form.
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Valid Syllogistic Forms

Traditional logic identified 24 valid syllogistic forms across the four figures.

Each valid form has a traditional Latin name that encodes its mood:
• Vowels indicate the categorical forms (A, E, I, O)
• Some consonants indicate required operations for reduction

Example (Famous Valid Forms) :

Figure 1 Figure 2 Figure 3 Figure 4
Barbara (AAA) Cesare (EAE) Darapti (AAI) Bramantip (AAI)
Celarent (EAE) Camestres (AEE) Disamis (IAI) Camenes (AEE)

Darii (AII) Festino (EIO) Datisi (AII) Dimaris (IAI)
Ferio (EIO) Baroco (AOO) Felapton (EAO) Fesapo (EAO)

Bocardo (OAO) Fresison (EIO)
Ferison (EIO)
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Syllogistic Fallacies

Common syllogistic fallacies:

Fallacy of Four Terms:
Using more than three distinct terms

Example :
• All banks are financial institutions
• The river bank is muddy
• Therefore, some financial institutions are muddy

(Equivocates on “bank”)

Undistributed Middle:
Middle term not distributed in either premise

Example :
• All cats are mammals
• All dogs are mammals
• Therefore, all cats are dogs

(“Mammals” not distributed)
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Syllogistic Fallacies [2]

Definition 33 (More Fallacies) :

Illicit Major: Major term distributed in
conclusion but not in major premise

Illicit Minor: Minor term distributed in
conclusion but not in minor premise

Fallacy of Exclusive Premises: Both premises
negative

Existential Fallacy: Particular conclusion from
universal premises (when subject class may be
empty)
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Distribution of Terms

Definition 34 :  A term is distributed in a proposition if the proposition says something about all
members of the class denoted by that term.

• Only universal propositions (A, E) distribute their subject term.
• Only negative propositions (E, O) distribute their predicate term.

Distribution
Form Subject Predicate
A: All S are P ✓ ✗
E: No S are P ✓ ✓
I: Some S are P ✗ ✗
O: Some S are not P ✗ ✓

45 / 65



Why Distribution Matters
Example :  Consider the terms in these propositions:

S P
• “All cats are mammals” (A-form)

‣ Says something about ALL cats (subject distributed)
‣ Says nothing about ALL mammals (predicate not distributed)

S P
• “No reptiles are mammals” (E-form)

‣ Says something about ALL reptiles (subject distributed)
‣ Says something about ALL mammals (predicate distributed)

S P✗
• “Some birds are flightless” (I-form)

‣ Says something about SOME birds (subject not distributed)
‣ Says something about SOME flightless creatures (predicate not distributed)

✗ P
• “Some animals are not vertebrates” (O-form)

‣ Says something about SOME animals (subject not distributed)
‣ Says something about ALL vertebrates (predicate distributed)
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Rules for Valid Syllogisms

Definition 35 (Validity Rules) :  A categorical syllogism is valid if and only if it satisfies all these rules:

1. Exactly three terms (no equivocation)
2. Middle term distributed at least once
3. No term distributed in conclusion unless distributed in premise
4. No conclusion from two negative premises
5. Negative conclusion if and only if exactly one negative premise
6. No particular conclusion from two universal premises (if existential import assumed)
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Venn Diagrams for Categorical Logic

Definition 36 (Venn Diagram Method) :  Categorical propositions can be represented using Venn
diagrams with two or three circles.

• Shaded regions represent empty classes
• ✗ marks represent existing individuals
• Overlap patterns show relationships between categories

Example (Venn Diagram for Syllogism) :  Testing Barbara (AAA-1):
• All M are P: Shade M outside P
• All S are M: Shade S outside M
• Conclusion: All S are P

The diagrams show that S must be entirely within P, validating the syllogism.
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Modern Developments

Traditional categorical logic has evolved in several directions:

• Set theory: Categories become sets, relations become set operations
• Formal semantics: Precise treatment of quantification and scope
• Knowledge representation: Description logics in AI and semantic web
• Natural language processing: Computational linguistics and parsing
• Database theory: Query languages and constraint systems
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Limitations of Traditional Logic

Traditional categorical logic has important limitations:
1. Only handles simple quantification (all, some, no)
2. Cannot express complex relationships (between more than two categories)
3. Limited to categorical structure (subject–predicate form)
4. Struggles with relational statements (“John is taller than Mary”)
5. No systematic treatment of compound statements
6. Existential import controversies

Example (What traditional logic cannot express) :
• “Every student likes some professor” (multiple quantifiers)
• “If John is happy, then Mary is happy” (conditional with individuals)
• “All numbers between 5 and 10 are prime” (complex domain restrictions)
• “Most birds can fly” (non-standard quantifiers)
• “Students who study hard usually succeed” (statistical generalizations)
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The Legacy of Traditional Logic

Enduring Contributions:
• Systematic study of quantification and categorical reasoning
• Recognition of logical form vs. content
• Analysis of validity in natural language arguments
• Foundation for formal semantics and knowledge representation
• Critical thinking tools for evaluating everyday reasoning

Modern Relevance: Traditional logic remains important for understanding human reasoning patterns,
developing AI systems that interact naturally with humans, and teaching critical thinking skills.
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First-Order Logic



Transition to First-Order Logic

Propositional logic can only reason about whole statements.

To reason about objects and their properties, we need first-order logic (FOL).

Example (Limitations of Propositional Logic) :  Cannot express:
• “All humans are mortal”
• “Socrates is human”
• “Therefore, Socrates is mortal”

In propositional logic, these would be unrelated atomic propositions 𝑃 , 𝑄, 𝑅, without any structure
connecting them.
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Transition to First-Order Logic [2]

Definition 37 :  First-order logic extends propositional logic with:
• Variables: 𝑥, 𝑦, 𝑧, …
• Predicates: 𝑃(𝑥), 𝑅(𝑥, 𝑦), …
• Quantifiers: ∀𝑥 (for all), ∃𝑥 (there exists)
• Functions: 𝑓(𝑥), 𝑔(𝑥, 𝑦), …
• Constants: 𝑎, 𝑏, 𝑐, …
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First-Order Syntax

Definition 38 (Terms) :  Terms are expressions denoting objects:
• Variables: 𝑥, 𝑦, 𝑧
• Constants: 𝑎, 𝑏, 𝑐
• Function applications: 𝑓(𝑡1, …, 𝑡𝑛) where 𝑡𝑖 are terms

Definition 39 (Atomic Formulas) :  Atomic formulas are basic statements:
• Predicate applications: 𝑃(𝑡1, …, 𝑡𝑛) where 𝑡𝑖 are terms
• Equality: 𝑡1 = 𝑡2 where 𝑡1, 𝑡2 are terms

Definition 40 (First-Order Formulas) :  Built recursively from atomic formulas using:
• Propositional connectives: ¬, ∧, ∨, →, ⟺
• Quantifiers: ∀𝑥.𝜑, ∃𝑥.𝜑
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First-Order Syntax [2]
Examples :
• ∀𝑥. (𝑃 (𝑥) → 𝑄(𝑥)) — “For all 𝑥, if 𝑃(𝑥) then 𝑄(𝑥)”
• ∃𝑥. (𝑃 (𝑥) ∧ ¬𝑄(𝑥)) — “There exists an 𝑥 such that 𝑃(𝑥) and not 𝑄(𝑥)”
• ∀𝑥.∃𝑦. 𝑅(𝑥, 𝑦) — “For every 𝑥, there exists a 𝑦 such that 𝑅(𝑥, 𝑦)”
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First-Order Semantics

Definition 41 :  A structure ℳ = ⟨𝐷, ℐ⟩ consists of:
• Domain 𝐷: non-empty set of objects
• Interpretation function ℐ:

‣ Maps constants to elements of 𝐷
‣ Maps 𝑛-ary predicates to 𝑛-ary relations on 𝐷
‣ Maps 𝑛-ary functions to 𝑛-ary functions on 𝐷

Definition 42 :  A variable assignment 𝜎 : 𝑉 → 𝐷 maps variables to domain elements.

Definition 43 (Truth in a Structure) :  For structure ℳ and assignment 𝜎:
• ℳ, 𝜎 ⊨ 𝑃(𝑡1, …, 𝑡𝑛) iff ⟨ℐ(𝑡1)

𝜎, …, ℐ(𝑡𝑛)𝜎⟩ ∈ ℐ(𝑃)
• ℳ, 𝜎 ⊨ ∀𝑥. 𝜑 iff ℳ, 𝜎′ ⊨ 𝜑 for all 𝜎′ that differ from 𝜎 at most on 𝑥
• ℳ, 𝜎 ⊨ ∃𝑥. 𝜑 iff ℳ, 𝜎′ ⊨ 𝜑 for some 𝜎′ that differs from 𝜎 at most on 𝑥

57 / 65



Theories and Models

Definition 44 :  A theory 𝑇  is a set of first-order formulas (axioms).

Definition 45 :  A structure ℳ is a model of theory 𝑇  if ℳ ⊨ 𝜑 for every formula 𝜑 ∈ 𝑇 .

Example (Group Theory) :  The theory of groups has axioms:
• (Associativity) ∀𝑥, 𝑦, 𝑧. (𝑥 ⋅ (𝑦 ⋅ 𝑧)) = ((𝑥 ⋅ 𝑦) ⋅ 𝑧)
• (Identity) ∃𝑒.∀𝑥. (𝑥 ⋅ 𝑒 = 𝑥) ∧ (𝑒 ⋅ 𝑥 = 𝑥)
• (Inverses) ∀𝑥.∃𝑦. (𝑥 ⋅ 𝑦 = 𝑒) ∧ (𝑦 ⋅ 𝑥 = 𝑒)

Models include ⟨ℤ, +⟩, ⟨ℝ ∖ {0}, ⋅⟩, etc.
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First-Order Natural Deduction

Definition 46 :  Additional rules for quantifiers:

Universal Introduction (∀I):

𝜑(𝑎)
∀𝑥. 𝜑(𝑥)

Where 𝑎 is arbitrary (fresh).

Universal Elimination (∀E):

∀𝑥. 𝜑(𝑥)
𝜑(𝑡)

Existential Introduction (∃I):

𝜑(𝑡)
∃𝑥. 𝜑(𝑥)

Existential Elimination (∃E):

∃𝑥. 𝜑(𝑥)
[𝜑(𝑎)]…𝜓
𝜓

Where 𝑎 is fresh and doesn’t occur in 𝜓.
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Interactive Theorem Provers

Modern mathematics increasingly uses interactive theorem provers — computer systems that assist in
constructing and verifying formal proofs.

Examples (Major Systems) :

Lean 4:
• Functional programming
• Dependent types
• Growing math library

Coq:
• Constructive logic
• Curry-Howard correspondence
• Machine-checked proofs

Isabelle/HOL:
• Higher-order logic
• Automated tactics
• Large formalizations

Example :  Major theorems proven in interactive systems:
• Four Color Theorem (Coq)
• Odd Order Theorem (Coq)
• Kepler Conjecture (Isabelle/HOL)
• Liquid Tensor Experiment (Lean)
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Completeness and Decidability

Theorem 7 (Gödel) :  First-order logic is complete: every semantically valid formula is provable.

Theorem 8 (Church) :  First-order logic is undecidable: there is no algorithm that determines whether
an arbitrary first-order formula is valid.

The trade-off:
• Propositional logic: decidable (SAT-solvable) but has limited expressiveness
• First-order logic: highly expressive but undecidable
• Higher-order logic: even more expressive but incomplete
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Applications and Connections
Example (Logic in Computer Science) :

Verification:
• Program correctness
• Hardware verification
• Protocol analysis
• Security properties

Databases:
• Query languages (SQL)
• Integrity constraints
• Deductive databases

AI and Knowledge Representation:
• Expert systems
• Automated planning
• Semantic web (RDF, OWL)
• Natural language processing

Programming Languages:
• Type systems
• Specification languages
• Logic programming (Prolog)
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Summary: The Logical Landscape

Logic Expressiveness Decidability Completeness
Propositional Basic ✓ ✓
First-Order High ✗ ✓
Second-Order Very High ✗ ✗
Higher-Order Maximum ✗ ✗

Key insights:
• Syntax and semantics can be perfectly aligned (completeness)
• Expressiveness comes at the cost of decidability
• Formal logic provides foundations for mathematical reasoning and computation
• Interactive theorem provers make formal logic practically useful
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Looking Forward
Next topics in advanced logic:
• Modal logic (necessity, possibility, knowledge, belief)
• Temporal logic (time, concurrency, reactive systems)
• Intuitionistic logic (constructive mathematics)
• Linear logic (resource-aware reasoning)
• Description logics (knowledge representation, semantic web)

Connections to other areas:
• Computability theory and complexity
• Category theory and type theory
• Model theory and set theory
• Philosophical logic and foundations of mathematics
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TODO
• …
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