
Discrete Mathematics
NFA — Spring 2025
Konstantin Chukharev

§1 Non-determinism

Non-deterministic Finite Automata

Definition 1 : A non-deterministic finite automaton (NFA) is a 5-tuple 𝒜 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹), where
• 𝑄 is a finite set of states,
• Σ is an alphabet (finite set of input symbols),
• 𝛿 : 𝑄 × Σ ⟶ 𝒫(𝑄) is a transition function,
• 𝑞0 ∈ 𝑄 is an initial (start) state,
• 𝐹 ⊆ 𝑄 is a set of accepting (final) states.

Michael Rabin Dana Scott

Note : 𝛿 : (𝑞, 𝑐) ↦ {𝑞(1), …, 𝑞(𝑛)}⏟⏟⏟⏟⏟⏟⏟
non-determinism

0 1

q0 q0 q0, q1
q1 q2

q2 q2 q1

Start q₀ 𝑞1 𝑞2

0,1
1 1

1

0

3 / 13

https://en.wikipedia.org/wiki/Michael_O._Rabin
https://en.wikipedia.org/wiki/Dana_Scott

Non-Determinism

Definition 2 : A model of computation is deterministic if at every point in the computation, there is
exactly one choice that can make.

Note : The machine accepts if that series of choices leads to an accepting state.

Definition 3 : A model of computation is non-deterministic if the computing machine may have
multiple decisions that it can make at one point.

Note : The machine accepts if any series of choices leads to an accepting state.

Intuition on non-determinism:
1. Tree computation
2. Perfect guessing
3. Massive parallelism

4 / 13

Tree Computation

Start 0 1 2

3 4 5

a

b

b

b

a

a,b

a

𝑤 = a b a b a

0

1

4

4

4

4 5

5

2

• At each decision point, the automaton clones itself for each possible decision.
• The series of choices forms a directed, rooted tree.
• At the end, if any active accepting (green) states remain, we accept.

5 / 13

Perfect Guessing
• We can view nondeterministic machines as having magic superpowers that enable them to guess the

correct choice of moves to make.

• Machine can always guess the right choice if one exists.

• No physical implementation is known, yet.

6 / 13

Massive Parallelism
• An NFA can be thought of as a DFA that can be in many states at once.

• Each symbol read causes a transition on every active state into each potential state that could be visited.

• Non-deterministic machines can be thought of as machines that can try any number of options in
parallel (using an unlimited number of “processors”).

7 / 13

Computation Model
Reachability relation for NFA is very similar to DFA’s:

⟨𝑞, 𝑥⟩ ⊢DFA ⟨𝑟, 𝑦⟩ iff {𝑥 = 𝑐𝑦 where 𝑐 ∈ Σ
𝑟 = 𝛿(𝑞, 𝑐)

⟨𝑞, 𝑥⟩ ⊢NFA ⟨𝑟, 𝑦⟩ iff {𝑥 = 𝑐𝑦 where 𝑐 ∈ Σ
𝑟 ∈ 𝛿(𝑞, 𝑐)

Definition 4 : An NFA accepts a word 𝑤 ∈ Σ∗ iff ⟨𝑞0, 𝑤⟩ ⊢∗ ⟨𝑓, 𝜀⟩ for some 𝑓 ∈ 𝐹 .

Definition 5 : A language recognized by an NFA is a set of all words accepted by the NFA.

ℒ(𝒜) = {𝑤 ∈ Σ∗ | ⟨𝑞0, 𝑤⟩ ⊢∗ ⟨𝑓, 𝜀⟩, 𝑓 ∈ 𝐹}

8 / 13

Rabin–Scott Powerset Construction
Any NFA can be converted to a DFA using Rabin–Scott subset construction.

𝒜N = ⟨Σ, 𝑄N, 𝛿N, 𝑞0, 𝐹N⟩
• 𝑄N = {𝑞1, 𝑞2, …, 𝑞𝑛}
• 𝛿N : 𝑄N × Σ ⟶ 𝒫(𝑄N)

𝒜D = ⟨Σ, 𝑄D, 𝛿D, {𝑞0}, 𝐹D⟩
• 𝑄D = 𝒫(𝑄N) = {∅, {𝑞1}, …, {𝑞2, 𝑞4, 𝑞5}, …, 𝑄N}
• 𝛿D : 𝑄D × Σ ⟶ 𝑄D
• 𝛿D : (𝐴, 𝑐) ↦ {𝑟 | ∃𝑞 ∈ 𝐴. 𝑟 ∈ 𝛿N(𝑞, 𝑐)}
• 𝐹D = {𝐴 | 𝐴 ∩ 𝐹N ≠ ∅}

9 / 13

𝜀-NFA

Definition 6 : Epsilon closure of a state 𝑞, denoted 𝐸(𝑞) or 𝜀-clo(𝑞), is a set of states reachable from 𝑞
by 𝜀-transitions.

𝐸(𝑞) = 𝜀-clo(𝑞) = {𝑟 ∈ 𝑄 | 𝑞 𝑟
𝜀 }

This definition can be extended to the sets of states. For 𝑃 ⊆ 𝑄:

𝐸(𝑃) = ⋃
𝑞∈𝑃

𝐸(𝑞)

Note : 𝑞 ∈ 𝜀-clo(𝑞) since each state has an implicit 𝜀-loop.

Example : For the following NFA, epsilon closure of 𝑞 is 𝜀-clo(𝑞) = {𝑞, 𝑟, 𝑠}.

𝑞 𝑟 𝑠
𝜀 𝜀

10 / 13

From 𝜀-NFA to NFA
To construct NFA from 𝜀-NFA:
1. Perform a transitive closure of 𝜀-transitions.

• After that, accepted words contain no two consecutive 𝜀-transitions.
2. Back-propagate accepting states over 𝜀-transitions.

• After that, accepted words do not end with 𝜀.
3. Perform symbol-transition back-closure over 𝜀-transitions.

• After that, accepted words do not contain 𝜀-transitions.
4. Remove 𝜀-transitions.

• After that, you get an NFA.

11 / 13

Kleene’s Theorem

Theorem 1 : REG = AUT.

Proof (REG ⊆ AUT) : For every regular language, there is a DFA that recognizes it.

Proof by induction over the generation index 𝑘. Show that ∀𝑘. Reg𝑘 ⊆ AUT.

Another name of this part: Thompson’s construction (NFA from regular expression).

Base: 𝑘 = 0, construct automata for Reg0 = {∅, {𝜀}, {𝑐} for 𝑐 ∈ Σ}, showing Reg0 ⊆ AUT:

𝑞0 𝑞1 𝑞0 𝑞1

𝜀

𝑞0 𝑞1

𝑐

𝐿 = ∅ 𝐿 = {𝜀} 𝐿 = {𝑐}

Induction step: 𝑘 > 0, already have automata for languages 𝐿1, 𝐿2 ∈ Reg𝑘−1.

□
12 / 13

Kleene’s Theorem [2]
Proof (AUT ⊆ REG) : The language recognized by a DFA is regular.

TODO: Kleene’s algorithm (regular expression from DFA): Given a deterministic automaton 𝒜, we can
construct a regular expression for the regular language recognized by 𝒜. □

13 / 13

	Non-determinism
	Non-deterministic Finite Automata
	Non-Determinism
	Tree Computation
	Perfect Guessing
	Massive Parallelism
	Computation Model
	Rabin–Scott Powerset Construction
	ε-NFA
	From ε-NFA to NFA
	Kleene's Theorem

