Discrete Mathematics
NFA — Spring 2025

Konstantin Chukharev

§1 Non-determinism

Non-deterministic Finite Automata

Definition 1: A non-deterministic finite automaton (NFA) is a 5-tuple A = (Q, %, 4, gy, F'), where
@ is a finite set of states,

+ Y is an alphabet (finite set of input symbols),

« 0:Q x X — P(Q) is a transition function,

+ ¢y € Q is an initial (start) state,

« I C Q is aset of accepting (final) states.

Note: J: (g,c) — {q(l)’ __.,q(n)}

non-determinism

0 1
qo [90 [g0, q1
ql q2
92 92| ql Michael Rabin ~ Dana Scott

3/13

https://en.wikipedia.org/wiki/Michael_O._Rabin
https://en.wikipedia.org/wiki/Dana_Scott

Non-Determinism

Definition 2: A model of computation is deterministic if at every point in the computation, there is
exactly one choice that can make.

Note: The machine accepts if that series of choices leads to an accepting state.

Definition 3: A model of computation is non-deterministic if the computing machine may have
multiple decisions that it can make at one point.

Note: The machine accepts if any series of choices leads to an accepting state.

Intuition on non-determinism:
1. Tree computation

2. Perfect guessing

3. Massive parallelism

4/13

Tree Computation

wzababa]
[OX6

« At each decision point, the automaton clones itself for each possible decision.
« The series of choices forms a directed, rooted tree.
« At the end, if any active accepting (green) states remain, we accept.

5/13

Perfect Guessing

+ We can view nondeterministic machines as having magic superpowers that enable them to guess the
correct choice of moves to make.

» Machine can always guess the right choice if one exists.

 No physical implementation is known, yet.

6/13

Massive Parallelism

+ An NFA can be thought of as a DFA that can be in many states at once.
« Each symbol read causes a transition on every active state into each potential state that could be visited.

» Non-deterministic machines can be thought of as machines that can try any number of options in
parallel (using an unlimited number of “processors”).

7/13

Computation Model

Reachability relation for NFA is very similar to DFA’s:

x=cy wherec€X

(¢, %) Fppa (ryy) iff {r =d(q,c)

r=cy WwhereceX

(¢,) Fnpa (ryy) iff {r € (g, c)

Definition 4: An NFA accepts a word w € X* iff (qy, w) H* (f,€) for some f € F.

Definition 5: A language recognized by an NFA is a set of all words accepted by the NFA.
’C(A) = {’U) Sy | <q0’w> H* <f75>a.f € F}

8/13

Rabin-Scott Powerset Construction

Any NFA can be converted to a DFA using Rabin-Scott subset construction.

AN = <EaQN75N7QO7FN>
° QN = {Q17q27 "'7qn}
c O QXX — P(Qy)

Ap = (,@p, 6p, {q0}, 1)

« Qp= ?(QN) = {Q)’ {(h}v "'7{(]2aQ4vQ5}’ -"7QN}
¢ dp:Qp XX —Qp

«op:(Ae) {r|dge A.r € éy(q,0)}

By ={A| ANk # 2}

9/13

e-NFA

Definition 6: Epsilon closure of a state ¢, denoted E(q) or e-clo(q), is a set of states reachable from g
by e-transitions.

E(q) = e-clo(q) = {r €eq | }

This definition can be extended to the sets of states. For P C Q:

E(P) = [E(q)

qeP

Note: g € e-clo(q) since each state has an implicit e-loop.

Example: For the following NFA, epsilon closure of ¢ is e-clo(q) = {q, , s}.

10/ 13

From -NFA to NFA

To construct NFA from e-NFA:

1.

Perform a transitive closure of e-transitions.

« After that, accepted words contain no two consecutive e-transitions.
. Back-propagate accepting states over e-transitions.

« After that, accepted words do not end with €.

. Perform symbol-transition back-closure over e-transitions.

« After that, accepted words do not contain e-transitions.
Remove e-transitions.
« After that, you get an NFA.

11/13

Kleene’s Theorem

Theorem 1: REG = AUT.

Proof (REG C AUT): For every regular language, there is a DFA that recognizes it.
Proof by induction over the generation index k. Show that Vk. Reg;, C AUT.
Another name of this part: Thompson’s construction (NFA from regular expression).

Base: k = 0, construct automata for Reg, = {9, {¢}, {c} for ¢ € ¥}, showing Reg, C AUT:

%O

L= {5} L= {c}

Induction step: k£ > 0, already have automata for languages L, L, € Reg,,_;.

12 /13

Kleene’s Theorem [2]
Proof (AUT C REG): The language recognized by a DFA is regular.

TODO: Kleene’s algorithm (regular expression from DFA): Given a deterministic automaton A, we can
construct a regular expression for the regular language recognized by A. O

13/13

	Non-determinism
	Non-deterministic Finite Automata
	Non-Determinism
	Tree Computation
	Perfect Guessing
	Massive Parallelism
	Computation Model
	Rabin–Scott Powerset Construction
	ε-NFA
	From ε-NFA to NFA
	Kleene's Theorem

