
Discrete Mathematics
(Not only) Regular Languages — Spring 2025
Konstantin Chukharev

§1 Regular Languages

Regular Expressions
Regular languages can be composed from “smaller” regular languages.

• Atomic regular expressions:
‣ ∅, an empty language
‣ 𝜀, a singleton language consisting of a single 𝜀 word
‣ a, a singleton language consisting of a single 1-letter word 𝑎, for each 𝑎 ∈ Σ

• Compound regular expressions:
‣ 𝑅1𝑅2, the concatenation of 𝑅1 and 𝑅2
‣ 𝑅1 | 𝑅2, the union of 𝑅1 and 𝑅2
‣ 𝑅∗ = 𝑅𝑅𝑅…, the Kleene star of 𝑅
‣ (𝑅), just a bracketed expression
‣ Operator precedence: ab*c|d ≜ ((a (b∗)) c) | d

3 / 33

Re-visiting States
• Let 𝐷 be a DFA with 𝑛 states.
• Any string 𝑤 accepted by 𝐷 that has length at least 𝑛 must visit some state twice.
• Number of states visited is equal to |𝑤| + 1.
• By the pigeonhole principle, some state is “duplicated”, i.e. visited more than once.
• The substring of 𝑤 between those revisited states can be removed, duplicated, tripled, etc. without

changing the fact that 𝐷 accepts 𝑤.

Start 𝑞1 𝑞2 𝑞3
𝑥 𝑧

𝑦

Informally:
• Let 𝐿 be a regular language.
• If we have a string 𝑤 ∈ 𝐿 that is “sufficiently long”, then we can split the string into three pieces and

“pump” the middle.
• We can write 𝑤 = 𝑥𝑦𝑧 such that 𝑥𝑦0𝑧, 𝑥𝑦1𝑧, 𝑥𝑦2𝑧, …, 𝑥𝑦𝑛𝑧, … are all in 𝐿.

‣ Notation: 𝑦𝑛 means “𝑛 copies of 𝑦”.
4 / 33

Weak Pumping Lemma

Theorem 1 (Weak Pumping Lemma for Regular Languages) :
• For any regular language 𝐿,

‣ There exists a positive natural number 𝑛 (also called pumping length) such that
- For any 𝑤 ∈ 𝐿 with |𝑤| ≥ 𝑛,

• There exists strings 𝑥, 𝑦, 𝑧 such that
‣ For any natural number 𝑖,

- 𝑤 = 𝑥𝑦𝑧 (𝑤 can be broken into three pieces)
- 𝑦 ≠ 𝜀 (the middle part is not empty)
- 𝑥𝑦𝑖𝑧 ∈ 𝐿 (the middle part can repeated any number of times)

Example : Let Σ = {0, 1} and 𝐿 = {𝑤 ∈ Σ∗ | 𝑤 contains 00 as a substring}. Any string of length 3 or
greater can be split into three parts, the second of which can be “pumped”.

Example : Let Σ = {0, 1} and 𝐿 = {𝜀, 0, 1, 00, 01, 10, 11}. The weak pumping lemma still holds for finite
languages, because the pumping length 𝑛 can be longer than the longest word in the language!

5 / 33

Testing Equality

Definition 1 : The equality problem is, given two strings 𝑥 and 𝑦, to decide whether 𝑥 = 𝑦.

Example : Let Σ = {0, 1, #}. We can encode the equality problem as a string of the form 𝑥#𝑦.
• “Is 001 equal to 110 ?” would be 001#110.
• “Is 11 equal to 11 ?” would be 11#11.
• “Is 110 equal to 110 ?” would be 110#110.

Let EQUAL = {𝑤#𝑤 | 𝑤 ∈ {0, 1}∗}.

Question: Is EQUAL a regular language?

A typical word in EQUAL looks like this: 001#001.
• If the “middle” piece is just a symbol #, then observe that 001 001 ∉ EQUAL.
• If the “middle” piece is either completely to the left or completely to the right of #, then observe that any

duplication or removal of this piece is not in EQUAL.
• If the “middle” piece includes # and any symbols from the left/right of it, then, again, observe that any

duplication or removal of this piece is not in EQUAL.
6 / 33

Testing Equality [2]

Theorem 2 : EQUAL is not a regular language.

Proof : By contradiction. Assume that EQUAL is a regular language.

Let 𝑛 be the pumping length guaranteed by the weak pumping lemma. Let 𝑤 = 0𝑛#0𝑛, which is in
EQUAL and |𝑤| = 2𝑛 + 1 ≥ 𝑛. By the weak pumping lemma, we can write 𝑤 = 𝑥𝑦𝑧 such that 𝑦 ≠ 𝜀 and
for any 𝑖 ∈ ℕ, 𝑥𝑦𝑖#𝑧 ∈ EQUAL. Then 𝑦 cannot contain #, since otherwise if we let 𝑖 = 0, then 𝑥𝑦0#𝑧 =
𝑥#𝑧 does not contain # and would not be in EQUAL. So 𝑦 is either completely to the left of # or
completely to the right of #.

Let |𝑦| = 𝑘, so 𝑘 > 0. Since 𝑦 is completely to the left or right of #, then 𝑦 = 0𝑘.

Now, we consider two cases:
Case 1: 𝑦 is to the left of #. Then 𝑥𝑦2𝑧 = 0𝑛+𝑘#0𝑛 ∉ EQUAL, contradicting the weak pumping lemma.
Case 2: 𝑦 is to the right of #. Then 𝑥𝑦2𝑧 = 0𝑛#0𝑛+𝑘 ∉ EQUAL, contradicting the weak pumping lemma.

In either case we reach a contradiction, so our assumption was wrong. Thus, EQUAL is not regular. □

7 / 33

§2 Non-regular Languages

(Not only) Regular Languages
• The weak pumping lemma describes a property common to all regular languages.
• Any language 𝐿 which does not have this property cannot be regular.
• What other languages can we find that are not regular?

Example : Consider the language 𝐿 = {0𝑛1𝑛 | 𝑛 ∈ ℕ}.
• 𝐿 = {𝜀, 01, 0011, 000111, 00001111, …}
• 𝐿 is a classic example of a non-regular language.
• Intuitively: if you have only finitely many states in a DFA, you cannot “remember” an arbitrary number

of 0s to match the same number of 1s.

How would we prove that 𝐿 is non-regular?

Use the Pumping Lemma to show that 𝐿 cannot be regular.

9 / 33

Pumping Lemma as a Game
The weak pumping lemma can be thought of as a game between you and an adversary.
• You win if you can prove that the pumping lemma fails.
• The adversary wins if the adversary can make a choice for which the pumping lemma succeeds.

The game goes as follows:
• The adversary chooses a pumping length 𝑛.
• You choose a string 𝑤 with |𝑤| ≥ 𝑛 and 𝑤 ∈ 𝐿.
• The adversary breaks it into 𝑥, 𝑦, and 𝑧.
• You choose an 𝑖 such that 𝑥𝑦𝑖𝑧 ∉ 𝐿 (if you can’t, you lose!).

10 / 33

Pumping Lemma as a Game [2]
𝐿 = {0𝑛1𝑛 | 𝑛 ∈ ℕ}

Adversary You
Maliciously choose
pumping length 𝑛

Cleverly choose a string
𝑤 ∈ 𝐿, |𝑤| ≥ 𝑛

Maliciously split
𝑤 = 𝑥𝑦𝑧, 𝑦 ≠ 𝜀

Cleverly choose an 𝑖
such that 𝑥𝑦𝑖𝑧 ∉ 𝐿

Lose Win
{0𝑛1𝑛} is not regular

11 / 33

Formal Proof of Non-regularity

Theorem 3 : 𝐿 = {0𝑛1𝑛 | 𝑛 ∈ ℕ} is not regular.

Proof : By contradiction. Assume that 𝐿 is regular.

Let 𝑛 be the pumping length guaranteed by the weak pumping lemma (“there exists 𝑛…”). Consider the
string 𝑤 = 0𝑛1𝑛. Then |𝑤| = 2𝑛 ≥ 𝑛 and 𝑤 ∈ 𝐿, so we can write (split) 𝑤 = 𝑥𝑦𝑧 such that 𝑦 ≠ 𝜀 and for
any 𝑖 ∈ ℕ, we have 𝑥𝑦𝑖𝑧 ∈ 𝐿.

We consider three cases:
Case 1: 𝑦 consists solely of 0s. Then 𝑥𝑦0𝑧 = 𝑥𝑧 = 0𝑛−|𝑦|1𝑛, and since |𝑦| > 0, 𝑥𝑧 ∉ 𝐿.
Case 2: 𝑦 consists solely of 1s. Then 𝑥𝑦0𝑧 = 𝑥𝑧 = 0𝑛1𝑛−|𝑦|, and since |𝑦| > 0, 𝑥𝑧 ∉ 𝐿.
Case 3: 𝑦 consists of 𝑘 > 0 0s followed by 𝑚 > 0 1s. Then 𝑥𝑦2𝑧 = 0𝑛1𝑚0𝑘1𝑛, so 𝑥𝑦2𝑧 ∉ 𝐿.

In all three cases we reach a contradiction, so our assumption was wrong and 𝐿 is not regular. □

12 / 33

§3 Pumping Lemma

Pumping
Consider the language 𝐿 over Σ = {0, 1} of strings 𝑤 ∈ Σ∗ that contain an equal number of 0s and 1s.

For example:
• 01 in 𝐿
• 11011 not in 𝐿
• 110010 in 𝐿

Question: Is 𝐿 a regular language?

Let’s use the weak pumping lemma to show it is by pumping all the strings in this language.

Proof (incorrect) : We are going to show that 𝐿 satisfies the conditions of the weak pumping lemma. Let
𝑛 = 2. Consider any string 𝑤 ∈ 𝐿 (i.e., 𝑤 contains the same number of 0s and 1s) with |𝑤| ≥ 2.

We can split 𝑤 = 𝑥𝑦𝑧 such that 𝑥 = 𝑧 = 𝜀 and 𝑦 = 𝑤, so 𝑦 ≠ 𝜀. Then, for any natural number 𝑖 ∈ ℕ,
𝑥𝑦𝑖𝑧 = 𝑤𝑖, which has the same number of 0s and 1s.

Since 𝐿 passes the conditions of the weak pumping lemma, 𝐿 is regular. □

14 / 33

A word of Caution
• The weak and full pumping lemmas describe the necessary condition of regular languages.

‣ If 𝐿 is regular, then it passes the conditions of the pumping lemma.
‣ If a language fails the pumping lemma, it is definitely not regular.

• The weak and full pumping lemmas are not a sufficient condition of regular languages.
‣ If 𝐿 is not regular, then it still may pass the conditions of the pumping lemma.
‣ If a language passes the pumping lemma, we learn nothing about whether it is regular or not.

15 / 33

The Stronger Pumping Lemma
The language 𝐿 can be proven to be non-regular using a stronger version of the pumping lemma.

For the intuition behind the “full” pumping lemma, let’s revisit our original observation.
• Let 𝐷 be a DFA with 𝑛 states.
• Any string 𝑤 accepted by 𝐷 of length at least 𝑛 must visit some state twice within its first 𝑛 symbols.

‣ The number of visited states is equal to 𝑛 + 1.
‣ By the pigeonhole principle, some state is duplicated.

• The substring of 𝑤 between those revisited states can be removed, duplicated, tripled, etc. without
changing the fact that 𝐷 accepts 𝑤.

Overall, we can add the following condition to the weak pumping lemma:

|𝑥𝑦| ≤ 𝑛

This restriction means that we can limit where the string to pump must be. If we specifically choose the
first 𝑛 characters of the string to pump, we can ensure 𝑦 (middle part) to have a specific property.

We can then show that 𝑦 cannot be pumped arbitrarily many times.

16 / 33

The Stronger Pumping Lemma [2]

Start 𝑞0 𝑞1

𝑞2

𝑞3 𝑞4

𝑞5

0
1

0

1
0

1

0 1
0,1

0,1

𝑞0 ⟶
0

𝑞1 ⟶
1

𝑞2 ⟶
1

𝑞3 ⟶
0

𝑞1 ⟶
1

𝑞2 ⟶
1

𝑞3 ⟶
0

𝑞1 ⟶
1

𝑞2 ⟶
1

𝑞3 ⟶
0

𝑞1 ⟶
1

𝑞2 ⟶
1

𝑞3 ⟶
1

𝑞4

17 / 33

Formal Proof of Non-regularity

Theorem 4 : 𝐿 = {𝑤 ∈ {0, 1}∗ | 𝑤 has an equal number of 0s and 1s} is not regular.

Proof : By contradiction. Assume that 𝐿 is regular.

Let 𝑛 be the pumping length guaranteed by the weak pumping lemma. Consider the string 𝑤 = 0𝑛1𝑛.
Then |𝑤| = 2𝑛 ≥ 𝑛 and 𝑤 ∈ 𝐿. Therefore, there exist strings 𝑥, 𝑦, and 𝑧 such that 𝑤 = 𝑥𝑦𝑧, |𝑥𝑦| ≤ 𝑛,
𝑦 ≠ 𝜀, and for any 𝑖 ∈ ℕ, we have 𝑥𝑦𝑖𝑧 ∈ 𝐿.

Since |𝑥𝑦| ≤ 𝑛, 𝑦 must consist solely of 0s. But then 𝑥𝑦2𝑧 = 0𝑛+|𝑦|1𝑛, and since |𝑦| > 0, 𝑥𝑦2𝑧 ∉ 𝐿.

We have reached a contradiction, so our assumption was wrong and 𝐿 is not regular. □

18 / 33

Summary of the Pumping Lemma
1. Using the pigeonhole principle, we can prove the weak and full pumping lemma.

2. These lemmas describe essential properties of the regular languages.

3. Any language that fails to have these properties can not be regular.

19 / 33

§4 Closure Properties of
Regular Languages

Closure of Regular Languages
1. The union of two regular languages is regular.
2. The intersection of two regular languages is regular.
3. The complement of a regular language is regular.
4. The difference of two regular languages is regular.
5. The reversal of a regular language is regular.
6. The Kleene star of a regular language is regular.
7. The concatenation of regular languages is regular.
8. A homomorphism (substitution of strings for symbols) of a regular language is regular.
9. The inverse homomorphism of a regular language is regular.

21 / 33

Closure under Union

Theorem 5 : If 𝐿 and 𝑀 are regular languages, then so is their union 𝐿 ∪ 𝑀 .

Proof : Since 𝐿 and 𝑀 are regular, they have regular expressions, i.e. 𝐿 = ℒ(𝑅) and 𝑀 = ℒ(𝑆).

Then 𝐿 ∪ 𝑀 = ℒ(𝑅 + 𝑆) by the definition of the union (+) operator for regular expressions. □

𝐴

𝐵 𝐴 ∪ 𝐵

𝜀

𝜀

22 / 33

Closure under Complement

Theorem 6 : If 𝐿 is a regular language over the alphabet Σ, then its complement 𝐿 = Σ∗ − 𝐿 is also a
regular language.

Proof : Let 𝐿 = ℒ(𝐴) for some DFA 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹). Then 𝐿 = ℒ(𝐵), where 𝐵 is the DFA
(𝑄, Σ, 𝛿, 𝑞0, 𝑄 − 𝐹). That is, 𝐵 is exactly like 𝐴, but with the accepting states flipped. Then 𝑤 is in 𝐿 if and
only if 𝛿(𝑞0, 𝑤) is in 𝑄 − 𝐹 , which occurs if and only if 𝑤 is not in ℒ(𝐴). □

Example : The DFA 𝐴 presented below on the left accepts only the strings of 0′s and 1′s that end in 01,
ℒ(𝐴) = (0+1)*01. The complement of ℒ(𝐴) is therefore all strings of 0′s and 1′s that do not end in 01.
Below on the right is the automaton for {0, 1}∗ − ℒ(𝐴).

Start 𝑞0 𝑞1 𝑞20

1 0
1

0

1

Start 𝑞0 𝑞1 𝑞20

1 0
1

0

1

23 / 33

Closure under Intersection

Theorem 7 : If 𝐿 and 𝑀 are regular languages, then so is their intersection 𝐿 ∩ 𝑀 .

Proof (simple) : 𝐿 ∩ 𝑀 = 𝐿 ∪ 𝑀 . □

Proof : We can directly construct a “product” DFA for the intersection of two regular languages.

Let 𝐿 and 𝑀 be the languages of automata 𝐴𝐿 = (𝑄𝐿, Σ, 𝛿𝐿, 𝑞𝐿, 𝐹𝐿) and 𝐴𝑀 = (𝑄𝑀 , Σ, 𝛿𝑀 , 𝑞𝑀 , 𝐹𝑀).
Note that we assume that the alphabets of both automata are the same (or Σ is their union).

For 𝐿 ∩ 𝑀 , we construct the automaton 𝐴 that simulates both 𝐴𝐿 and 𝐴𝑀 . The states of 𝐴 are the product
of the states of 𝐴𝐿 and 𝐴𝑀 . The initial state is (𝑞𝐿, 𝑞𝑀), and the accepting states are 𝐹𝐿 × 𝐹𝑀 . The
transitions are defined as 𝛿(⟨𝑝, 𝑞⟩, 𝑐) = ⟨𝛿𝐿(𝑝, 𝑐), 𝛿𝑀(𝑞, 𝑐)⟩.

To see why ℒ(𝐴) = ℒ(𝐴𝐿) ∩ ℒ(𝐴𝑀), first observe that 𝛿(⟨𝑞𝐿, 𝑞𝑀⟩, 𝑤) = ⟨𝛿𝐿(𝑞𝐿, 𝑤), 𝛿𝑀(𝑞𝑀 , 𝑤)⟩. But 𝐴
accepts 𝑤 if and only if 𝛿(𝑞0, 𝑤) is in 𝐹𝐿 × 𝐹𝑀 , which occurs if and only if 𝛿𝐿(𝑞𝐿, 𝑤) is in 𝐹𝐿 and
𝛿𝑀(𝑞𝑀 , 𝑤) is in 𝐹𝑀 . Or rather, 𝐴 accepts 𝑤 if and only if both 𝐴𝐿 and 𝐴𝑀 accept 𝑤. Thus, 𝐴 accepts the
intersection of 𝐿 and 𝑀 . □

24 / 33

Closure under Intersection [2]
Example : The first automaton on the left accepts all strings that have a 0. The second automaton in the
middle accepts all strings that have a 1. On the right, we show the product of these two automata. Its states
are labelled by the pairs of states of the two automata. It is easy to see that this automaton accepts the
intersection of the two languages: all strings that have both a 0 and a 1.

Start 𝑝 𝑞
0

1 0,1

Start
𝑟 𝑠

1

0 0,1 Start 𝑝𝑟 𝑝𝑠

𝑞𝑟 𝑞𝑠

0

1

0

1

0

1 0,1

25 / 33

Closure under Difference

Theorem 8 : If 𝐿 and 𝑀 are regular languages, then so is their difference 𝐿 − 𝑀 .

Proof : Observe that 𝐿 − 𝑀 = 𝐿 ∩ 𝑀 . By previous theorems, 𝑀 is regular, and 𝐿 ∩ 𝑀 is also regular. □

26 / 33

Closure under Reversal

Definition 2 : The reversal of a string 𝑤 = 𝑎1𝑎2…𝑎𝑛 is the string 𝑤𝑅 = 𝑎𝑛𝑎𝑛−1…𝑎1.

Example : 0010𝑅 = 0100 and 𝜀𝑅 = 𝜀.

Definition 3 : The reversal of a language 𝐿 is the language 𝐿𝑅 = {𝑤𝑅 | 𝑤 ∈ 𝐿}.

Example : Let 𝐿 = {001, 10, 111}, then 𝐿𝑅 = {001𝑅, 10𝑅, 111𝑅} = {100, 01, 111}.

Theorem 9 : If 𝐿 is a regular language, then so its reversal 𝐿𝑅 .

Proof : Assume 𝐿 is defined by regular expression 𝐸. The proof is a structural induction on the size of 𝐸.
We show that there is another regular expression 𝐸𝑅 such that ℒ(𝐸𝑅) = (ℒ(𝐸))𝑅 , that is, the language
of 𝐸𝑅 is the reversal of the language of 𝐸.

Basis: If 𝐸 is 𝜀, ∅, or a for some symbol 𝑎, then 𝐸𝑅 is the same as 𝐸.

27 / 33

Closure under Reversal [2]
Induction: There are three cases, depending on the form of 𝐸.

1. 𝐸 = 𝐸1 + 𝐸2. Then 𝐸𝑅 = 𝐸𝑅
1 + 𝐸𝑅

2 .

The justification is that the reversal of the union of two languages is obtained by computing the
reversals of the two languages and taking the union of those languages.

2. 𝐸 = 𝐸1𝐸2. Then 𝐸𝑅 = 𝐸𝑅
2 𝐸𝑅

1 . Note that we reverse the order of the two languages, as well as
reversing the languages themselves. For example, if ℒ(𝐸1) = {0, 1111} and ℒ(𝐸2) = {00, 10}, then
ℒ(𝐸1𝐸2) = {0100, 0110, 11100, 11110}. The reversal of the latter language is

{0010, 0110, 00111, 01111}

If we concatenate the reversals of ℒ(𝐸2) and ℒ(𝐸1), we get

{00, 01}{10, 111} = {0010, 00111, 0110, 01111}

which is the same language as (ℒ(𝐸1𝐸2))
𝑅 . In general, if a word 𝑤 in ℒ(𝐸) is the concatenation of 𝑤1

from ℒ(𝐸1) and 𝑤2 from ℒ(𝐸2), then 𝑤𝑅 = 𝑤𝑅
2 𝑤𝑅

1 .

28 / 33

Closure under Reversal [3]
3. 𝐸 = 𝐸∗

1. Then 𝐸𝑅 = (𝐸𝑅
1)∗.

The justification is that any string 𝑤 in ℒ(𝐸) can be written as 𝑤1𝑤2…𝑤𝑛, where each 𝑤𝑖 is in ℒ(𝐸1).
Then 𝑤𝑅 = 𝑤𝑅

𝑛 𝑤𝑅
𝑛−1…𝑤𝑅

1 . Each 𝑤𝑅
𝑖 is in ℒ(𝐸𝑅), so 𝑤𝑅 is in ℒ((𝐸𝑅

1)∗).

Conversely, any string in ℒ((𝐸𝑅
1)∗) is of the form 𝑤1𝑤2…𝑤𝑛, where each 𝑤𝑖 is the reversal of a string

in ℒ(𝐸1). The reversal of this string, 𝑤𝑅
𝑛 𝑤𝑅

𝑛−1…𝑤𝑅
1 , is therefore a string in ℒ(𝐸∗

1), which is ℒ(𝐸).

We have thus shown that a string is in ℒ(𝐸) if and only if its reversal is in ℒ((𝐸𝑅
1)∗).

□

Example : Let 𝐿 be defined by the regular expression (0+1)0*. Then 𝐿𝑅 is the language of (0*)𝑅(0+1)𝑅 .

If we apply the rules for Kleene star and union to the two parts, and then apply the basis rule that says the
reversals of 0 and 1 are unchanged, we find that 𝐿𝑅 has regular expression 0*(0+1).

29 / 33

§5 Decision Properties of
Regular Languages

Fundamental Questions about Languages
1. Is the language empty?

2. Is the language finite?

3. Is the particular string 𝑤 in the language?

4. Is the language a subset of another language?

5. Are the two languages equivalent?

31 / 33

Decision Procedures
Converting among representations
• 𝜀-closure: 𝑂(𝑛3)
• 𝜀-NFA to DFA: 𝑛32𝑛

• DFA to 𝜀-NFA: 𝑂(𝑛)
• 𝜀-NFA to RegEx: 𝑂(𝑛34𝑛)
• RegEx to 𝜀-NFA: 𝑂(𝑛)

Testing emptiness of a regular language
• Given an automaton, we can determine whether the accepting states are reachable, in 𝑂(𝑛2) time.
• Given a regular expression, we can construct an 𝜀-NFA and then determine the reachability of the

accepting states, in 𝑂(𝑛) time. Alternatively, we can inspect the regex directly.

Testing membership in a regular language
• Given an automaton with 𝑠 states and a string 𝑤 of size 𝑛, we can simulate the automaton for 𝑤 to

determine whether it accepts 𝑤.
‣ For DFA, this can be done in 𝑂(𝑛) time.
‣ For NFA or 𝜀-NFA, in 𝑂(𝑛𝑠2).

32 / 33

Emptiness, Finiteness, Infiniteness

Theorem 10 : The language 𝐿 accepted by a finite automaton with 𝑛 states is non-empty iff the finite
automaton accepts a word of length less than 𝑛.

Theorem 11 : The language 𝐿 accepted by a finite automaton 𝑀 with 𝑛 states is infinite iff the
automaton accepts some word of length 𝑙, where 𝑛 ≤ 𝑙 < 2𝑛.

Proof : If 𝑤 is in ℒ(𝑀) and 𝑛 ≤ |𝑤| < 2𝑛, then by the Pumping lemma, ℒ(𝑀) is infinite. That is, 𝑤 =
𝑥𝑦𝑧, and for all 𝑖, 𝑥𝑦𝑖𝑧 is in 𝐿. Conversely, if ℒ(𝑀) is infinite, then there exists 𝑤 in ℒ(𝑀), where |𝑤| ≥
𝑛. If |𝑤| < 2𝑛, we are done. If no word is of length between 𝑛 and 2𝑛 − 1, let 𝑤 be of length at least 2𝑛, but
as short as any word in ℒ(𝑀) whose length is greater than of equal to 2𝑛. Again by the Pumping lemma,
we can write 𝑤 = 𝑥𝑦𝑧 with 1 ≤ |𝑦| ≤ 𝑛 and 𝑥𝑧 ∈ ℒ(𝑀). Either 𝑤 was not the shortest word of length 2𝑛
or more, or |𝑥𝑧| is between 𝑛 and 2𝑛 − 1, a contradiction in either case. □

33 / 33

	Regular Languages
	Regular Expressions
	Re-visiting States
	Weak Pumping Lemma
	Testing Equality

	Non-regular Languages
	(Not only) Regular Languages
	Pumping Lemma as a Game
	Formal Proof of Non-regularity

	Pumping Lemma
	Pumping
	A word of Caution
	The Stronger Pumping Lemma
	Formal Proof of Non-regularity
	Summary of the Pumping Lemma

	Closure Properties of Regular Languages
	Closure of Regular Languages
	Closure under Union
	Closure under Complement
	Closure under Intersection
	Closure under Difference
	Closure under Reversal

	Decision Properties of Regular Languages
	Fundamental Questions about Languages
	Decision Procedures
	Emptiness, Finiteness, Infiniteness

