Discrete Mathematics

(Not only) Regular Languages – Spring 2025

Konstantin Chukharev

§1 Regular Languages

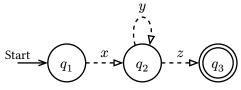
Regular Expressions

Regular languages can be composed from "smaller" regular languages.

- Atomic regular expressions:
 - Ø, an empty language
 - ε , a singleton language consisting of a single ε word
 - a, a singleton language consisting of a single 1-letter word a, for each $a\in\Sigma$
- Compound regular expressions:
 - + R_1R_2 , the concatenation of R_1 and R_2
 - + $R_1 \mid R_2,$ the union of R_1 and R_2
 - ▶ $R^* = RRR...$, the Kleene star of R
 - + (R), just a bracketed expression
 - Operator precedence: $ab*c \mid d \triangleq ((a \ (b^*)) \ c) \mid d$

Re-visiting States

- Let D be a DFA with n states.
- Any string w accepted by D that has length at least n must visit some state twice.
- Number of states visited is equal to |w| + 1.
- By the pigeonhole principle, some state is "duplicated", i.e. visited more than once.
- The substring of *w* between those *revisited states* can be removed, duplicated, tripled, etc. without changing the fact that *D* accepts *w*.



Informally:

- Let L be a regular language.
- If we have a string $w \in L$ that is "sufficiently long", then we can *split* the string into *three pieces* and "*pump*" the middle.
- We can write w = xyz such that $xy^0z, xy^1z, xy^2z, ..., xy^nz, ...$ are all in L.
 - Notation: y^n means "n copies of y".

Weak Pumping Lemma

Theorem 1 (Weak Pumping Lemma for Regular Languages):

- For any regular language *L*,
 - There exists a positive natural number n (also called *pumping length*) such that
 - For any $w \in L$ with $|w| \ge n$,
 - There exists strings x, y, z such that
 - ▶ For any natural number *i*,
 - w = xyz (w can be broken into three pieces)
 - $y\neq\varepsilon$ (the middle part is not empty)
 - $xy^iz\in L$ (the middle part can repeated any number of times)

Example: Let $\Sigma = \{0, 1\}$ and $L = \{w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring}\}$. Any string of length 3 or greater can be split into three parts, the second of which can be "pumped".

Example: Let $\Sigma = \{0, 1\}$ and $L = \{\varepsilon, 0, 1, 00, 01, 10, 11\}$. The weak pumping lemma still holds for finite languages, because the pumping length n can be longer than the longest word in the language!

Testing Equality

Definition 1: The *equality problem* is, given two strings x and y, to decide whether x = y.

Example: Let $\Sigma = \{0, 1, \#\}$. We can *encode* the equality problem as a string of the form x # y.

- "Is *001* equal to *110*?" would be 001#110.
- "Is *11* equal to *11*?" would be 11#11.
- "Is *110* equal to *110*?" would be 110#110.

Let EQUAL = $\{w \# w \mid w \in \{0, 1\}^*\}.$

Question: Is EQUAL a *regular* language?

A typical word in EQUAL looks like this: 001#001.

- If the "middle" piece is just a symbol #, then observe that $001\ 001 \notin \text{EQUAL}$.
- If the "middle" piece is either completely to the left or completely to the right of #, then observe that any duplication or removal of this piece is not in EQUAL.
- If the "middle" piece includes # and any symbols from the left/right of it, then, again, observe that any duplication or removal of this piece is not in EQUAL.

Testing Equality [2]

Theorem 2: EQUAL is not a regular language.

Proof: By contradiction. Assume that EQUAL is a regular language.

Let *n* be the pumping length guaranteed by the weak pumping lemma. Let $w = 0^n \# 0^n$, which is in EQUAL and $|w| = 2n + 1 \ge n$. By the weak pumping lemma, we can write w = xyz such that $y \ne \varepsilon$ and for any $i \in \mathbb{N}$, $xy^i \# z \in \text{EQUAL}$. Then *y* cannot contain #, since otherwise if we let i = 0, then $xy^0 \# z = x \# z$ does not contain # and would not be in EQUAL. So *y* is either completely to the left of # or completely to the right of #.

Let |y| = k, so k > 0. Since y is completely to the left or right of #, then $y = 0^k$.

Now, we consider two cases:

Case 1: *y* is to the left of #. Then $xy^2z = 0^{n+k} \# 0^n \notin EQUAL$, contradicting the weak pumping lemma. Case 2: *y* is to the right of #. Then $xy^2z = 0^n \# 0^{n+k} \notin EQUAL$, contradicting the weak pumping lemma.

In either case we reach a contradiction, so our assumption was wrong. Thus, EQUAL is not regular.

§2 Non-regular Languages

(Not only) Regular Languages

- The weak pumping lemma describes a property common to *all* regular languages.
- Any language *L* which does not have this property *cannot be regular*.
- What other languages can we find that are not regular?

Example: Consider the language $L = \{0^n 1^n \mid n \in \mathbb{N}\}.$

- $L=\{\varepsilon,01,0011,000111,00001111,\ldots\}$
- L is a classic example of a non-regular language.
- **Intuitively:** if you have *only finitely many states* in a DFA, you cannot *"remember"* an arbitrary number of 0s to match *the same* number of 1s.

How would we prove that L is non-regular?

Use the Pumping Lemma to show that *L* cannot be regular.

Pumping Lemma as a Game

The weak pumping lemma can be thought of as a *game* between **you** and an **adversary**.

- You win if you can prove that the pumping lemma *fails*.
- The adversary wins if the adversary can make a choice for which the pumping lemma succeeds.

The game goes as follows:

- The adversary chooses a pumping length *n*.
- You choose a string w with $|w| \ge n$ and $w \in L$.
- The adversary breaks it into x, y, and z.
- You choose an *i* such that $xy^iz \notin L$ (if you can't, you lose!).

Pumping Lemma as a Game [2]

$$L = \{0^n 1^n \mid n \in \mathbb{N}\}$$

Adversary	You
Maliciously choose	
pumping length n	
	Cleverly choose a string
	$w \in L, w \ge n$
Maliciously split	
$w = xyz, y \neq \varepsilon$	
	Cleverly choose an i
	such that $xy^iz\notin L$
Lose	Win
$\{0^n1^n\}$ is not regular	

Formal Proof of Non-regularity

Theorem 3: $L = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

Proof: By contradiction. Assume that *L* is regular.

Let *n* be the pumping length guaranteed by the weak pumping lemma ("there exists *n*…"). Consider the string $w = 0^n 1^n$. Then $|w| = 2n \ge n$ and $w \in L$, so we can write (split) w = xyz such that $y \ne \varepsilon$ and for any $i \in \mathbb{N}$, we have $xy^i z \in L$.

We consider three cases:

Case 1: y consists solely of 0s. Then $xy^0z = xz = 0^{n-|y|}1^n$, and since |y| > 0, $xz \notin L$. Case 2: y consists solely of 1s. Then $xy^0z = xz = 0^n1^{n-|y|}$, and since |y| > 0, $xz \notin L$. Case 3: y consists of k > 0 0s followed by m > 0 1s. Then $xy^2z = 0^n1^m0^k1^n$, so $xy^2z \notin L$.

In all three cases we reach a contradiction, so our assumption was wrong and L is not regular.

§3 Pumping Lemma

Pumping

Consider the language L over $\Sigma = \{0, 1\}$ of strings $w \in \Sigma^*$ that contain *an equal number* of 0s and 1s.

For example:

- 01 in L
- 11011 not in L
- 110010 in ${\cal L}$

Question: Is *L* a *regular* language?

Let's use the weak pumping lemma to show it is by pumping all the strings in this language.

Proof *(incorrect)*: We are going to show that *L* satisfies the conditions of the weak pumping lemma. Let n = 2. Consider any string $w \in L$ (i.e., *w* contains the same number of 0s and 1s) with $|w| \ge 2$.

We can split w = xyz such that $x = z = \varepsilon$ and y = w, so $y \neq \varepsilon$. Then, for any natural number $i \in \mathbb{N}$, $xy^i z = w^i$, which has the same number of 0s and 1s.

Since L passes the conditions of the weak pumping lemma, L is regular.

 \square

A word of Caution

- The weak and full pumping lemmas describe the *necessary* condition of regular languages.
 - ▶ If *L* is *regular*, then it *passes* the conditions of the pumping lemma.
 - ▶ If a language *fails* the pumping lemma, it is *definitely not regular*.
- The weak and full pumping lemmas are *not a sufficient* condition of regular languages.
 - ▶ If *L* is *not regular*, then it still *may pass* the conditions of the pumping lemma.
 - If a language *passes* the pumping lemma, we *learn nothing* about whether it is regular or not.

The Stronger Pumping Lemma

The language *L* can be proven to be *non-regular* using a *stronger version* of the pumping lemma.

For the intuition behind the "full" pumping lemma, let's revisit our original observation.

- Let D be a DFA with n states.
- Any string w accepted by D of length at least n must visit some state twice within its first n symbols.
 - The number of visited states is equal to n + 1.
 - By the pigeonhole principle, some state is *duplicated*.
- The substring of w between those *revisited states* can be removed, duplicated, tripled, etc. without changing the fact that D accepts w.

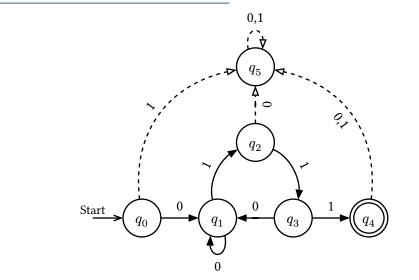
Overall, we can add the following condition to the weak pumping lemma:

 $|xy| \leq n$

This restriction means that we can limit where the string to pump must be. If we specifically choose the first n characters of the string to pump, we can ensure y (middle part) to have a specific property.

We can then show that y cannot be pumped arbitrarily many times.

The Stronger Pumping Lemma [2]



 $q_0 \xrightarrow{0} q_1 \xrightarrow{1} q_2 \xrightarrow{1} q_3 \xrightarrow{1} q_4$

Formal Proof of Non-regularity

Theorem 4: $L = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is *not regular*.

Proof: By contradiction. Assume that L is regular.

Let *n* be the pumping length guaranteed by the weak pumping lemma. Consider the string $w = 0^n 1^n$. Then $|w| = 2n \ge n$ and $w \in L$. Therefore, there exist strings *x*, *y*, and *z* such that w = xyz, $|xy| \le n$, $y \ne \varepsilon$, and for any $i \in \mathbb{N}$, we have $xy^i z \in L$.

Since $|xy| \le n$, y must consist solely of 0s. But then $xy^2z = 0^{n+|y|}1^n$, and since |y| > 0, $xy^2z \notin L$.

We have reached a contradiction, so our assumption was wrong and L is not regular.

Summary of the Pumping Lemma

- 1. Using the *pigeonhole principle*, we can prove the weak and full *pumping lemma*.
- 2. These lemmas describe essential properties of the *regular* languages.
- 3. Any language that *fails* to have these properties *can not be regular*.

§4 Closure Properties of Regular Languages

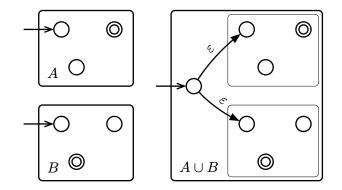
Closure of Regular Languages

- 1. The *union* of two regular languages is regular.
- 2. The *intersection* of two regular languages is regular.
- 3. The *complement* of a regular language is regular.
- **4.** The *difference* of two regular languages is regular.
- 5. The *reversal* of a regular language is regular.
- 6. The *Kleene star* of a regular language is regular.
- 7. The *concatenation* of regular languages is regular.
- 8. A *homomorphism* (substitution of strings for symbols) of a regular language is regular.
- 9. The *inverse homomorphism* of a regular language is regular.

Closure under Union

Theorem 5: If *L* and *M* are regular languages, then so is their union $L \cup M$.

Proof: Since *L* and *M* are regular, they have regular expressions, i.e. $L = \mathcal{L}(R)$ and $M = \mathcal{L}(S)$. Then $L \cup M = \mathcal{L}(R + S)$ by the definition of the union (+) operator for regular expressions.

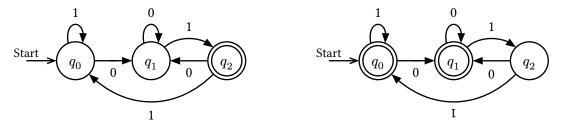


Closure under Complement

Theorem 6: If *L* is a regular language over the alphabet Σ , then its complement $\overline{L} = \Sigma^* - L$ is also a regular language.

Proof: Let $L = \mathcal{L}(A)$ for some DFA $A = (Q, \Sigma, \delta, q_0, F)$. Then $\overline{L} = \mathcal{L}(B)$, where B is the DFA $(Q, \Sigma, \delta, q_0, Q - F)$. That is, B is exactly like A, but with the accepting states flipped. Then w is in \overline{L} if and only if $\delta(q_0, w)$ is in Q - F, which occurs if and only if w is not in $\mathcal{L}(A)$.

Example: The DFA A presented below on the left accepts only the strings of 0's and 1's that end in 01, $\mathcal{L}(A) = (0+1)*01$. The complement of $\mathcal{L}(A)$ is therefore all strings of 0's and 1's that *do not* end in 01. Below on the right is the automaton for $\{0, 1\}^* - \mathcal{L}(A)$.



Closure under Intersection

Theorem 7: If *L* and *M* are regular languages, then so is their intersection $L \cap M$.

Proof (simple): $L \cap M = \overline{\overline{L} \cup \overline{M}}$.

Proof: We can directly construct a "product" DFA for the intersection of two regular languages.

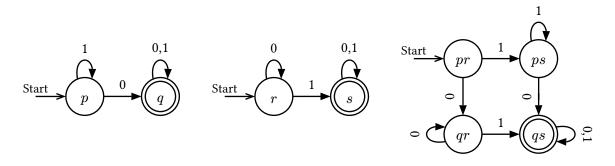
Let L and M be the languages of automata $A_L = (Q_L, \Sigma, \delta_L, q_L, F_L)$ and $A_M = (Q_M, \Sigma, \delta_M, q_M, F_M)$. Note that we assume that the alphabets of both automata are the same (or Σ is their union).

For $L \cap M$, we construct the automaton A that simulates both A_L and A_M . The states of A are the product of the states of A_L and A_M . The initial state is (q_L, q_M) , and the accepting states are $F_L \times F_M$. The transitions are defined as $\delta(\langle p, q \rangle, c) = \langle \delta_L(p, c), \delta_M(q, c) \rangle$.

To see why $\mathcal{L}(A) = \mathcal{L}(A_L) \cap \mathcal{L}(A_M)$, first observe that $\hat{\delta}(\langle q_L, q_M \rangle, w) = \langle \hat{\delta}_L(q_L, w), \hat{\delta}_M(q_M, w) \rangle$. But A accepts w if and only if $\hat{\delta}(q_0, w)$ is in $F_L \times F_M$, which occurs if and only if $\hat{\delta}_L(q_L, w)$ is in F_L and $\hat{\delta}_M(q_M, w)$ is in F_M . Or rather, A accepts w if and only if both A_L and A_M accept w. Thus, A accepts the intersection of L and M.

Closure under Intersection [2]

Example: The first automaton on the left accepts all strings that *have a 0*. The second automaton in the middle accepts all strings that *have a 1*. On the right, we show the *product* of these two automata. Its states are labelled by the pairs of states of the two automata. It is easy to see that this automaton accepts the *intersection* of the two languages: all strings that *have both a 0 and a 1*.



Closure under Difference

Theorem 8: If L and M are regular languages, then so is their difference L - M.

Proof: Observe that $L - M = L \cap \overline{M}$. By previous theorems, \overline{M} is regular, and $L \cap \overline{M}$ is also regular. \Box

Closure under Reversal

Definition 2: The *reversal* of a string $w = a_1 a_2 \dots a_n$ is the string $w^R = a_n a_{n-1} \dots a_1$. *Example*: $0010^R = 0100$ and $\varepsilon^R = \varepsilon$.

Definition 3: The *reversal* of a language L is the language $L^R = \{w^R \mid w \in L\}$. *Example*: Let $L = \{001, 10, 111\}$, then $L^R = \{001^R, 10^R, 111^R\} = \{100, 01, 111\}$.

Theorem 9: If *L* is a regular language, then so its reversal L^R .

Proof: Assume *L* is defined by regular expression *E*. The proof is a structural induction on the size of *E*. We show that there is another regular expression E^R such that $\mathcal{L}(E^R) = (\mathcal{L}(E))^R$, that is, the language of E^R is the reversal of the language of *E*.

Basis: If *E* is ε , \emptyset , or a for some symbol *a*, then E^R is the same as *E*.

Closure under Reversal [2]

Induction: There are three cases, depending on the form of E.

1.
$$E = E_1 + E_2$$
. Then $E^R = E_1^R + E_2^R$.

The justification is that the reversal of the union of two languages is obtained by computing the reversals of the two languages and taking the union of those languages.

2. $E = E_1 E_2$. Then $E^R = E_2^R E_1^R$. Note that we reverse the order of the two languages, as well as reversing the languages themselves. For example, if $\mathcal{L}(E_1) = \{0, 1111\}$ and $\mathcal{L}(E_2) = \{00, 10\}$, then $\mathcal{L}(E_1 E_2) = \{0100, 0110, 11100, 11110\}$. The reversal of the latter language is

 $\{0010, 0110, 00111, 01111\}$

If we concatenate the reversals of $\mathcal{L}(E_2)$ and $\mathcal{L}(E_1),$ we get

 $\{00,01\}\{10,111\}=\{0010,00111,0110,01111\}$

which is the same language as $(\mathcal{L}(E_1E_2))^R$. In general, if a word w in $\mathcal{L}(E)$ is the concatenation of w_1 from $\mathcal{L}(E_1)$ and w_2 from $\mathcal{L}(E_2)$, then $w^R = w_2^R w_1^R$.

Closure under Reversal [3]

3. $E = E_1^*$. Then $E^R = (E_1^R)^*$.

The justification is that any string w in $\mathcal{L}(E)$ can be written as $w_1w_2...w_n$, where each w_i is in $\mathcal{L}(E_1)$. Then $w^R = w^R_n w^R_{n-1}...w^R_1$. Each w^R_i is in $\mathcal{L}(E^R)$, so w^R is in $\mathcal{L}(\left(E_1^R\right)^*)$.

Conversely, any string in $\mathcal{L}((E_1^R)^*)$ is of the form $w_1w_2...w_n$, where each w_i is the reversal of a string in $\mathcal{L}(E_1)$. The reversal of this string, $w_n^R w_{n-1}^R...w_1^R$, is therefore a string in $\mathcal{L}(E_1^*)$, which is $\mathcal{L}(E)$.

We have thus shown that a string is in $\mathcal{L}(E)$ if and only if its reversal is in $\mathcal{L}((E_1^R)^*)$.

Example: Let *L* be defined by the regular expression $(0+1)0^*$. Then L^R is the language of $(0^*)^R (0+1)^R$.

If we apply the rules for Kleene star and union to the two parts, and then apply the basis rule that says the reversals of 0 and 1 are unchanged, we find that L^R has regular expression 0*(0+1).

§5 Decision Properties of Regular Languages

Fundamental Questions about Languages

- **1.** Is the language *empty*?
- 2. Is the language *finite*?
- **3.** Is the particular string w *in* the language?
- 4. Is the language a *subset* of another language?
- **5.** Are the two languages *equivalent*?

Decision Procedures

Converting among representations

- ε -closure: $O(n^3)$
- ε -NFA to DFA: $n^3 2^n$
- DFA to ε -NFA: O(n)
- + $\,\varepsilon\text{-NFA}$ to RegEx: $O\bigl(n^34^n\bigr)$
- RegEx to $\varepsilon\text{-NFA:}\,O(n)$

Testing emptiness of a regular language

- Given an automaton, we can determine whether the accepting states are reachable, in ${\cal O}(n^2)$ time.
- Given a regular expression, we can construct an ε -NFA and then determine the reachability of the accepting states, in O(n) time. Alternatively, we can inspect the regex directly.

Testing *membership* in a regular language

- Given an automaton with s states and a string w of size n, we can simulate the automaton for w to determine whether it accepts w.
 - ▶ For DFA, this can be done in O(n) time.
 - ▶ For NFA or ε -NFA, in $O(ns^2)$.

Emptiness, Finiteness, Infiniteness

Theorem 10: The language L accepted by a finite automaton with n states is *non-empty* iff the finite automaton accepts a word of length less than n.

Theorem 11: The language *L* accepted by a finite automaton *M* with *n* states is *infinite* iff the automaton accepts some word of length *l*, where $n \le l < 2n$.

Proof: If w is in $\mathcal{L}(M)$ and $n \leq |w| < 2n$, then by the Pumping lemma, $\mathcal{L}(M)$ is infinite. That is, w = xyz, and for all i, xy^iz is in L. Conversely, if $\mathcal{L}(M)$ is infinite, then there exists w in $\mathcal{L}(M)$, where $|w| \geq n$. If |w| < 2n, we are done. If no word is of length between n and 2n - 1, let w be of length at least 2n, but as short as any word in $\mathcal{L}(M)$ whose length is greater than of equal to 2n. Again by the Pumping lemma, we can write w = xyz with $1 \leq |y| \leq n$ and $xz \in \mathcal{L}(M)$. Either w was not the shortest word of length 2n or more, or |xz| is between n and 2n - 1, a contradiction in either case.