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Relations

“In mathematics you don’t understand things. You just get used to them.”

— John von Neumann

René Descartes Evariste Galois Ernst Schroder Michael Rabin ~ Herbert Wilf



Relations as Sets

Definition 1: A binary relation R on sets A and B is a subset of the Cartesian product A x B.

Notation: If R C A x B, we write “a R b” to mean that element a € A is related to element b € B.
Formally, a R b iff (a,b) € R.
Note: R is used to denote both the relation itself (a R b) and the set of pairs (R C A x B).

Note: the order of elements in the pair matters: (a,b) € R denotes that a is related to b, not the other way

around, unless there is another pair (b, a) in the relation.
Example: R = {(n,k) | n,k € N and n < k}
Definition 2:

+ A binary relation R C A x B on two different sets A and B is called heterogeneous.
+ A binary relation R C M 2 on the same set M is called homogeneous.
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Graph Representation

Definition 3: A homogeneous relation R C M? can be represented as a directed graph where:
» Vertices correspond to elements of M
+ There is a directed edge from z toy if x R y, i.e. (z,y) € R

Example: For M = {1,2,3} and R = {(1, 2), (2, 3), (1, 3) }, the graph has vertices {1, 2, 3} and directed
edges1 -+ 2,2 — 3,and 1 — 3.

1R2
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Graph Representation [2]

Definition 4: A heterogeneous relation R C A X B can be represented as a bipartite graph where:
« Vertices in one partition correspond to elements of A

+ Vertices in the other partition correspond to elements of B

+ There is a directed edge froma € Atob € Bifa R b, ie. (a,b) € R

Example: For animals A = { ,4,,% } food B={,*, }, andrelation R = “likes to eat”, we have the
bipartite graph with animal vertices on the left side and food vertices on the right side with four edges.

Animals (A) Food (B)
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Matrix Representation

Definition 5: A binary relation R C A x B can be represented as a matrix M = [R] where:
+ Rows correspond to elements of A

+ Columns correspond to elements of B

« Mgli,j] = 1if a; R bj, and M[i, j| = 0 otherwise

Example: Let A = {a,b,c}, B = {z,y}, and R = {(a, x), (b, z), (¢, y) }. The matrix representation is:

1
[R] = |1 where rows are {a, b, c} and columns are {z,y}
0

= o O
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Special Relations

Definition 6: For any set M, we define these special relations:

« Empty relation: @ C M? (no elements are related)

o Identity relation: I; = {(z,x) | * € M} (each element related only to itself)
« Universal relation: Uy; = M? (every element related to every element)

Example: For M = {a, b, c}:

« Empty: @

+ Identity: {{(a, a), (b,b), (c,c)}

+ Universal: {{(a, a), (a,b), (a, c)(b,a), (b,b), (b, c), {(c,a),{(c,b), (c,c)} (all 9 pairs)
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Operations on Relations

Definition 7: For relations R, S C A x B:

 Union: RUS = {{a,b) | (a,b) € R or (a,b) € S}

« Intersection: RNS = {{a,b) | (a,b) € R and (a,b) € S}
« Complement: R = (A x B)\ R

Definition 8: For a relation R C A X B, the converse (or inverse) relation is:

R'={(b,a) | {a,b) e R} CBx A

Example: If R = {(1,z),(2,7),(2,2)}, then R™! = {(z,1), (y,2), (2,2)}.
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Properties of Relations




Properties of Homogeneous Relations

Definition 9: A relation R C M? is reflexive if every element is related to itself:

Vee M.(x R x)

Definition 10: A relation R C M? is symmetric if for every pair of elements, if one is related to the
other, then the reverse is also true:

Ve,ye M.(x Ry) — (y R x)

Definition 11: A relation R C M?2 is transitive if for every three elements, if the first is related to the
second, and the second is related to the third, then the first is also related to the third:

Ve,yz€e M. (t RyAyR z) — (z R 2)
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More Properties

Definition 12: A relation R C M? is irreflexive if no element is related to itself:

Vz € M.(z R z)

Definition 13: A relation R C M? is antisymmetric if for every pair of elements, if both are related to
each other, then they must be equal:

Ve,ye M.(x RyAhyRz) — (x =vy)

Definition 14: A relation R C M? is asymmetric if for every pair of elements, if one is related to the
other, then the reverse is not true:

Vz,ye M.(x Ry) = (y R z)

Note: irreflexive + antisymmetric = asymmetric.

12
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Notes on Properties

» Reflexivity and irreflexivity are not mutually exclusive if M = @ (both are vacuously" true).
« Symmetry and antisymmetry are not mutually exclusive (e.g. identity relation).

« Asymmetry implies irreflexivity and antisymmetry.

' A statement “for all = in emptyset, P(z)” is considered true because there are no counterexamples in the empty set.
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Additional Properties

Definition 15: A relation R C M? is:
+ Coreflexive if R C I, (only related to themselves, if at all):
Ve,y € M.(x Ry) — (z =vy)
« Right Euclidean if whenever an element is related to two others, those two are related:

Ve,yz€ M. (x RyAz Rz) = (y R 2)

o Left Euclidean if whenever two elements are both related to a third, they are related to each other:

Ve,y,z€ M. (yRxANzRz)— (y R 2)

Example:
+ Identity relation I, is coreflexive. Any subset of I, is also coreflexive.

« Equality relation “=" is left and right Euclidean.
- “Being in the same equivalence class” is Euclidean in both directions.
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Equivalence Relations

Definition 16: A relation R C M? is an equivalence relation if it is reflexive, symmetric and transitive.

Definition 17: Let R C M? be an equivalence relation on a set M. The equivalence class of an
element x € M under R is the set of all elements related to z:

[z]r ={y € M |z Ry}

Definition 18: The quotient set of M by the equivalence relation R is the set of all equivalence classes:

M/p = {[z]p | x € M}

Theorem 1: If R C M? is an equivalence relation, then = R y iff [z] = [y]g for all z,y € M.
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Set Partitions

Definition 19: A partition P of a set M is a family of non-empty, pairwise-disjoint subsets whose
union is M:

+ (Non-empty) VB € P. (B # @)

- (Disjoint) VB,, B, € P.(B; # B,) = (B, N By = @)

+ (Cover) |J B=M
Be?

Elements of P are blocks (or cells).

Example: For M ={0,1,2,3,4,5}: {{0,2,4},{1,3,5}} and {{0, 5}, {1, 2,3}, {4} } are partitions.

) [

e o o o eojle
e o o e o o
1 35 1 2 3
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Partitions and Equivalence Relations

Theorem 2 (Equivalences <> Partitions): Each equivalence relation R on M yields the partition
Pr =A{[z]g | = € M}. Each partition P yields an equivalence R, given by (x,y) € R iff x and y lie
in the same block. These constructions invert one another.

Proof (Sketch): Classes of an equivalence are non-empty, disjoint, and cover M. Conversely, “same block”

relation is reflexive, symmetric, transitive. Composing the two constructions returns exactly the starting
equivalence relation or partition (they are mutually inverse up to equality of sets of ordered pairs). O
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Closures of Relations

Definition 20: The closure of a relation R C M? with respect to a property P is the smallest relation
containing R that satisfies property P.

* Reflexive closure: 7(R) = R U I,; (smallest reflexive relation containing R)

« Symmetric closure: s(R) = R U R™! (smallest symmetric relation containing R)

« Transitive closure: t(R) is the smallest transitive relation containing R

The key insight is that closure operations add the minimum number of pairs needed to achieve the
desired property, while preserving all existing pairs in the original relation.
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Reflexive Closure

Definition 21: The reflexive closure r(R) of a relation R C M? is defined as:
r(R)=RUI,, =RU{(z,z) | x € M}

Example: Let M = {1,2,3} and R = {(1,2),(2,2),(2,3)}.
The identity relation is I, = {(1, 1), (2,2), (3,3)}.
The reflexive closure is:

r(R) = RU I, ={(1,1),(1,2),(2,2),(2,3),(3,3) }
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Symmetric Closure

Definition 22: The symmetric closure s(R) of a relation R C M? is defined as:

s(R)=RUR™'=RU{(b,a) | (a,b) € R}

Example: Let M = {1,2,3} and R = {(1,2),(2,3),(1,3)}.
The converse relation is:

R ={(2,1),(3,2),(3, 1)}
The symmetric closure is:

s(R)= RUR™' ={(1,2),(2,3),(1,3),(2,1),(3,2),(3,1)}

22
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Transitive Closure

Definition 23: The transitive closure t(R) of a relation R C M? is the smallest transitive relation
containing R.

Theorem 3: The transitive closure can be computed as:

t(R)=|J R" where R"=RoRo..oR

n=1 n times

For finite sets with | M| = k, we have t(R) = R' UR? U ... U R

Proof: Since M is finite, any path of length greater than | M| must repeat vertices, so we only need to
consider paths of length at most |M]|. O
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Transitive Closure [2]

Example (Step-by-step transitive closure computation): Let M = {1,2,3} and R = {(1,2), (2,3)}.

Step Description Result
Step 1: Compute R! = R. R' = {(1,2),(2,3)}
Step 2: Compute R? = Ro R. R? = {(1,3)}
For (a,c) € R?, weneed 3b: (a,b) € RA (b,c) € R.
« (1,3) € R?%since (1,2) € Rand (2,3) € R
Step 3: Compute R® = R? o R. R}=9
For {a,c) € R, we need 3b : (a,b) € R A (b,c) € R.
+ No such pairs exist.
Step 4: Form the transitive closure: t(R) = R! U R? U R3. t(R) ={(1,2),(2,3),(1,3)}

24
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Combined Closures

Definition 24: Closure operations can be combined to create relations with multiple properties:
* Reflexive-symmetric closure: Ts(R) = sr(R) = r(R) U s(R) U I,

* Reflexive-transitive closure: rt(R) = tr(R) = t(R) U I,

« Equivalence closure: rst(R) = tsr(R) (reflexive, symmetric, and transitive)

Theorem 4 (Commutativity of closure operations):

+ Reflexive and symmetric closures commute: rs(R) = sr(R)
« Reflexive and transitive closures commute: rt(R) = tr(R)

« All three closures commute when applied together
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Reflexive-Symmetric Closure

Example (Reflexive-symmetric closure): Let M = {1,2,3} and R = {(1,2),(2,3)}.

Method 1: Apply reflexive closure first, then symmetric
T(R) =RU IM = {<1a 1)7 <17 2>a <2a 2>7 (27 3>a <3a 3>}
sr(R) =r(R)Ur(R)™?

= {<17 1)7 (17 2>’ <2’ 2>7 <27 3)’ <37 3)7 (27 1>’ <3’ 2>}
Method 2: Apply symmetric closure first, then reflexive

s(R) = RUR™ ={(1,2),(2,3),(2,1),(3,2)}

rs(R) = s(R)U Iy,
= {<17 1)7 (17 2>’ <2’ 1>7 <27 2)’ <27 3)7 (37 2>’ <3’ 3>}

Both methods yield the same result, confirming commutativity.

26
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Reflexive-Transitive Closure

Example (Reflexive-transitive closure (Kleene star)): Let M = {a,b,c} and R = {(a, b), (b, c)}.
First, compute the transitive closure:

t(R) = RUR? = {{a,b), (b,¢c), (a,c)}

Then add reflexivity:
rt(R) = t(R) U I; = {{(a,a), (a,b), (a,c), (b,b), (b, c), (c,c)}

This is equivalent to the reflexive-transitive closure, often denoted R* (Kleene star).
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Equivalence Closure

Example (Complete equivalence closure): Let M = {1,2,3,4} and R = {(1,2), (3,4)}.
Step 1: Make it reflexive
r(R)=RUI,, = {(1,1),(1,2),(2,2),(3,3),(3,4), (4,4) }
Step 2: Make it symmetric
sr(R) =r(R)Ur(R)™!

={(1,1),(1,2),(2,1),(2,2),(3,3), (3,4), (4,3), (4,4)}

Step 3: Make it transitive Since (1, 2), (2,1) € sr(R), transitivity requires (1, 1) (already present). Since
(3,4), (4,3) € sr(R), transitivity requires (3, 3) (already present).

tsr(R) = sr(R)
(no new pairs needed)

The equivalence closure partitions M into equivalence classes {1,2} and {3, 4}.

28
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Equivalence Closure [2]

Example (Equivalence closure [2]): Let M = {a,b,c,d,e} and R = {{a,b), (b, c), (d,e)}.

Reflexive closure:
r(R) = RU{{(a,a), (b,b), (c,c), (d,d), (e, e)}
Symmetric closure:
sr(R) =r(R) U {(b,a), (c,b), (e, d)}

Transitive closure: We need to add pairs to ensure transitivity:
+ From (a, b), (b, c): add (a, c)
+ From (c, b), (b, a): add (c, a)

tsr(R) \ = sr(R) U {{a,c),{c,a)}

The final equivalence relation has equivalence classes {a, b, c} and {d, e}.

29
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Warshall’s Algorithm for Transitive Closure

Definition 25: Warshall’s algorithm computes the transitive closure of a relation using dynamic
programming with time complexity O(n?).
Given an n X n matrix M representing relation R:

for k =1 to n:
for i =1 to n:
for j =1 to n:
M[i,j] = M[i,j] OR (M[i,k] AND M[k,jl)

Example (Warshall’s algorithm step-by-step): Let X = {1, 2, 3,4} and relation R with matrix:

[R] = M© =

o oo
SO O
oo = O
o= OO

30

91



Warshall’s Algorithm for Transitive Closure [2]

Iteration k = 1: Consider paths through vertex 1

01 00
m_(0 010
M 0 0 01
1 100
(Added (4,2): path4 — 1 — 2)
Iteration k = 2: Consider paths through vertex 2
0110
@2_10 010
M 0 0 01
1 110

(Added (1, 3) and (4, 3))
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Warshall’s Algorithm for Transitive Closure [3]

Iteration k = 3: Consider paths through vertex 3

0111
@_10 0 11
M 0 0 01
1 111
(Added (1,4), (2,4), and (4,4))
Iteration k = 4: Consider paths through vertex 4
1 111
1 1 11
(4) =
M 11 11
1 1 11

(The relation becomes universal since there’s a cycle)
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Warshall’s Algorithm for Transitive Closure [4]

Example (Practical application: Reachability in graphs): Consider a social network where R represents
“follows” relationships:

R = {<AaB>’ <B’ C>7 <C’D>’ <A’E>}

Using Warshall’s algorithm, we can determine indirect influence:
+ A can influence C' through B

+ A can influence D through B and C

« The transitive closure shows all possible influence paths

This is crucial for analyzing information propagation in social networks, dependency resolution in software
systems, and route planning in transportation networks.
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Properties and Advanced Applications of Closures

Theorem 5 (Closure properties): For any relation R C M?:

1.

Idempotency: r(r(R)) = r(R), s(s(R)) = s(R), t(t(R)) = t(R)

2. Monotonicity:If R; C R,, thenr(R;) C r(R,), etc.
3.
4. Distributivity over union: 7(R; U Ry) = r(R;) Ur(R,), etc.

Extensivity: R C r(R), R C s(R), R C t(R)

Example (Closure of the empty relation): Let M = {a,b,c} and R = @.
° 7“(@) =oUly =1y = {<a7 a>v <b’ b>v (C, C>}

cs(@)=oUuop =0
« (@) = @ (since " = @ foralln > 1)

The reflexive closure of the empty relation is the identity relation.

34/91



Properties and Advanced Applications of Closures [2]

Example (Closure of the universal relation): Let M = {1,2} and R=M x M =
{(1,1),(1,2),(2,1),(2,2)}.

« r(R) = RUI,; = R (since I,; C R)

s(R) = RUR™ = R (since R = R™! for universal relation)

+ t(R) = R (universal relation is already transitive)

The universal relation is its own closure under all three operations.
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Properties and Advanced Applications of Closures [3]

Example (Non-commutativity with other operations): Let M = {1,2,3}, Ry = {(1,2)}, and R, = {(2,3)}.

Consider t(R; U Ry) vs t(Ry) Ut(R,):
* RiUR, = {<172>’ <2’3>}
¢ t(Rl U RQ) = {<1’2>7 <2a3>a <173>}

Since (1,3) € t(R; U R,) but (1,3) ¢ t(R;) Ut(R,), we have:
t(Ry U Ry) # t(R,) Ut(Ry)

However: t(R,) Ut(R,) C t(R; U R,) always holds.
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Properties and Advanced Applications of Closures [4]

Example (Computing equivalence classes from closure): Let M = {1,2,3,4,5} and R =
{(1,3),(2,4), (4,5)}.
The equivalence closure gives us:
equiv(R) = rst(R)
={(1,1),(1,3),(2,2),(2,4),(2,5), (3,1), (3,3), (4,2), (4,4), (4,5), (5,2), (5,4), (5,5) }

The equivalence classes are:
- [1=1{1,3}
- [2] ={2,4,5}

This partitions M into {{1,3},{2,4,5}}.
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Properties and Advanced Applications of Closures [5]

Example (Closure in directed acyclic graphs (DAGs)): Consider a dependency graph where R =
{(A,B), (B,C), (A, D), (D, C)} represents “depends on” relationships.

The transitive closure reveals all indirect dependencies:
t(R) = RU{(A,C)}
This shows that component A transitively depends on C through two paths:

e A—-B—>C
e A—-D—=C

In software build systems, this helps determine the complete dependency tree.

38
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When Relation Closures Actually Matter

r

& Netflix Knows You Too Well

Transitive closure powers recommendation

systems and social networks:

+ You like movie A, Alice likes A and B, so you
might like B.

+ Chain reactions: A — B — C — D discovers
surprising connections.

That creepy moment when Netflix suggests something

perfect? That’s transitive closure finding paths through
millions of user preferences.

N

& How Money Actually Moves

Transitive closure tracks financial flows:

+ You pay bank = bank pays merchant =
merchant pays supplier.

« Money laundering detection: hidden chains
of transactions.

Banks use this to catch criminals who try to hide money
through complex chains of fake transactions.

Key insight: If you can get from A to C by going through B, then transitive closure provides the
direct A — C relation — whether it’s movies, money, friends, or malware.
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Orders

Definition 26: A relation R C M? is called a preorder if it is reflexive and transitive.

Definition 27: A partial order is a relation R C M 2 that is reflexive, antisymmetric, and transitive.

Definition 28: A relation R C M? is connected if for every pair of distinct elements, either one is
related to the other or vice versa:

Ve,ye M.(x #y) - (t RyVyRzx)

Definition 29: A partial order which is also connected is called a total order (or linear order).
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Chains and Antichains

Definition 30: In a partially ordered set (M, <):
* A chain is a subset C' C M where every two elements are comparable. Formally:

Ve,ye C.(x <yory=<zx)

+ An antichain is a subset A C M where no two distinct elements are comparable. Formally:

Ve,ye A. (z #y) = (r Ay and y £ x)

Example: Consider the divisibility relation | on {1,2,3,4,6,12}:
+ Chain: {1,2,4,12} (since 1 | 2| 4| 12)
+ Chain: {1,3,6,12} (since 1 | 3| 6| 12)
+ Antichain: {2,3} (since 2  3and 3 } 2)
« Antichain: {4,6} (since 4 } 6 and 6 } 4)

42
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Dilworth’s Theorem

Theorem 6 (Dilworth): In any finite partially ordered set, the maximum size of an antichain equals
the minimum number of chains needed to cover the entire set.

Example: In the Boolean lattice P({a, b}) with inclusion:

+ Maximum antichain: {{a}, {b}} of size 2
+ Minimum chain decomposition: {@, {a}} U {{b}, {a, b}} with 2 chains
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Examples of Orders

Example: Consider the no longer than relation < on B*:
z=y iff len(z) <len(y)
This is a preorder (reflexive and transitive), and even connected, but not a partial order, since it is not

antisymmetric: for example, 01 < 10 and 10 < 01, but 01 # 10.

Example: The subset relation C on P(A) is a partial order (reflexive, antisymmetric, transitive); typically
not total, since not all subsets are comparable (e.g., A = {1} and B = {2, 3}).

Example: Divisibility | on D = {1,2,3,6}: 1/2/6, 1|3

6; 2 and 3 incomparable. Partial, not total.

Example: Lexicographic order on A™ (induced by a total order on A) is a total order.

44
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Composition of Relations

Definition 31: The composition of two relations R C A x Band S C B x C is defined as:

R;S=SoR={{a,c) |FbeB.(aRb)A(bSc)}
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Powers of Relations

Definition 32: For a homogeneous relation R C M?, we define powers of R:
« RY = I, (identity relation)

- R'=R

« Rl = R"o Rforn>1

Example: Let M = {1,2,3,4} and R = {(1,2), (2,3), (3,4)} (successor relation).

- R' = {(1,2),(2,3),(3,4)}

« R? ={(1,3),(2,4)} (two steps)
« R3 = {(1,4)} (three steps)

« R* = @ (no four-step paths)

Theorem 7: For any relation R on a finite set with n elements:
« RY = R'UR?U...U R" is a transitive closure.
« R* = ROURT = I UR" is a reflexive-transitive closure.

47
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Associativity of Composition

Theorem 8: Composition of relations is associative: (R ; S) ; T =R ; (S; T).

Proof: Let RC Ax B,S C Bx C,andT C C x D be three relations.

(©):Let (a,d) € (R;S);T.

+ By definition of composition: 3¢ € C. ({(a,c) € R; S) A ({¢,d) € T).
+ Since {(a,c) € R ; S, we have: 3b € B. ((a,b) € R) A ((b,c) € S).

+ From (b, c) € S and (c¢,d) € T, we have: (b,d) € S ; T.

+ From (a,b) € Rand (b,d) € S; T, we have: (a,d) € R; (S;T).
(2): Let (a,d) e R; (S;T).

+ By definition of composition: 3b € B. ({a,b) € R) A ((b,d) € S ; T).
« Since (b,d) € S ; T, we have: 3c € C. ({b,c) € S) A ({¢,d) € T)).

+ From (a,b) € Rand (b,c) € S, we have: (a,c) € R; S.

 From (a,c) € R; S and (¢,d) € T, we have: (a,d) € (R;S); T.
Therefore, (R; S); T =R; (S;T). O
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Functions

“A function is a machine which converts a certain class of inputs
into a certain class of outputs.”

— Norbert Wiener

Leonhard Euler Augustin-Louis Karl Joseph-Louis  George Pélya Norbert

Cauchy Weierstrass Lagrange Wiener



Definition of a Function

Definition 33: A function f from a set A to a set B, denoted f : A — B, is a special kind of relation
f € A x B where every element of A is paired with exactly one element of B.

This means two conditions must hold:
1. Functional (right-unique): For every a € A, there is at most one pair (a, b) in f.

Va € A.Vby,by € B.(f(a) =by) A (f(a) =by) = (by = by)
2. Serial (left-total): For every a € A, there is at least one pair {a, b) in f.

Vae A.3be B. f(a)=b

Definition 34: A relation that satisfies the functional property is called a partial function.

A relation that satisfies both properties is called a total function, or simply a function.
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Domain, Codomain, Range

Definition 35: For a function f : A — B:

+ The set A is called the domain of f, denoted Dom( f).

« The set B is called the codomain of f, denoted Cod(f).

+ The range (or image) of f is the set of all values that f actually takes:

Range(f) ={b€ B|3Jac A. f(a) =b} ={f(a) | a € A}
Note: Range(f) C Cod(f)

Example: Let A = {1,2,3} and B = {z,y, z}. Let f = {(1,2),(2,y), (3, ) }.
« fis a function from A to B.

« Dom(f)=A

« Cod(f)=B

« Range(f) = {z,y} C B

We have f(1) =z, f(2) =y, f(3) ==
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Domain, Codomain, Range [2]

Example: Consider g : Z — Z defined by g(n) = n2.

« Dom(g) = Z.
+ Cod(g) = Z.
- Range(g) = {0,1,4,9, ...} (the set of non-negative perfect squares).
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Injective Functions

Definition 36: A function f : A — B is injective (or one-to-one?) if distinct elements in the domain
map to distinct elements in the codomain. Formally:

Vay,ay € A.(f(ay) = f(ay)) = (a; = ay)

Example: f: N — N defined by f(n) = 2n is injective. If f(n,) = f(n,), then 2n; = 2n,, so n; = n,.

2

Example: g : Z — 7 defined by g(n) = n? is not injective, because g(—1) = 1 and g(1) = 1, but —1 # 1.

*Do not confuse it with one-to-one correspondence, which is a bijection, not just injection!
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Surjective Functions

Definition 37: A function f : A — B is surjective (or onto) if every element in the codomain is the
image of at least one element in the domain. Formally:

Vbe B.3a € A. f(a) =b

For surjective functions, Range(f) = Cod(f), i.e., there are no “uncovered” elements in the right side.

Example: f : R — R defined by f(z) = z is surjective. For any y € R, £ = {/y is such that f(z) = y.

Example: g : N — N defined by g(n) = 2n is not surjective, because odd numbers in N (the codomain) are
not in the range of g. For example, there is no n € N such that 2n = 3.
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Bijective Functions

Definition 38: A function f : A — B is bijective if it is both injective and surjective. A bijective
function establishes a one-to-one correspondence between the elements of A and B.

Example: f: R — R defined by f(z) = 2x + 1 is bijective.
+ Injective: If 2z, + 1 = 224 + 1, then 2z, = 224, s0 z; = 5.
+ Surjective: Forany y € R, let x = y%l Then f(z) = 2(”7_1) +1l=y—14+1=y.

Example: The identity function id 4 : A — A defined by id 4 (z) = « for all z € A is bijective.
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Function Composition

Definition 39: Let f: A — Band g : B — C be two functions. The composition of g and f, denoted
g o f (read as “g composed with f” or “g after f), is a function from A to C' defined by:

(g f)(a) = g(f(a))
Example: Let f :R — Rbe f(z) =z?andg: R — Rbe g(z) =z + 1.

c (go f)(z) =g(f(x)) = g(z*) =2 + 1.
c (feg)x)=flgx) =flz+1)=(z+1) =2 +2z + 1
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Properties of Function Composition

« Associativity:If f : A— B,g: B— C,and h: C — D, then (hog)o f="ho(go f).
« The identity function acts as a neutral element for composition:

» idg o f = f for any function f: A — B.

» foidy = f for any function f: A — B.
« Composition preserves the properties of functions:

» If f and g are injective, sois g o f.

» If f and g are surjective, sois g o f.

» If f and g are bijective, so is g o f.

+ Note that in general, g o f # f o g, i.e., function composition is not commutative.
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Inverse Functions

Definition 40: If f : A — B is a bijective function, then its inverse function, denoted f1:B—= Ais
defined as:

i) =a iff f(a)=0

Note: A function has an inverse if and only ifit is bijective.

Example: Let f : R — Rbe f(z) = 2z + 1. We found it’s bijective. To find f~!(y), let y = 2z + 1. Solving
=yl

for x, we get © = y2;1 So, f~1(y) 3
Theorem 9: If f : A — B is a bijective function with inverse f~! : B — A:
. flis also bijective.
« (ftof)(a)=aforalla € A(ie, f'o f=idy).
o (fof1)(b)=bforallb € B(ie, fo f ! =idp).
«Iff: A— Bandg: B — C are both bijective, then (go f)™' = ftog™t.
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Image and Preimage of Sets

Definition 41: Let f : A — B be a function and let S C A. The image of S under f is the set:
f(S)={f(s) | s € S}
Note that f(S) C B. The range of fis f(A).

Definition 42: Let f : A — B be a function and let 7" C B. The preimage of T" under f (or inverse
image of T') is the set of all elements in the domain that map into 7"

fH(T) ={ac Al fla) €T}

Note: The notation f~!(T') is used even if the inverse function f~! does not exist (i.e., if f is not
bijective). It always refers to the set of domain elements that map into 7.
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Image and Preimage of Sets [2]

Example: Let f : Z — Z be f(z) = 22

« Let S ={—2,—1,0,1,2}. Then f(S )={
« Let T} = {1, 9}. The preimage is f~*(T})
« Let T, = {2, 3}. The preimage is f~*(T})

(—2), f(=1), f(0), f(1), f(2)} = {4,1,0,1,4} = {0,1,4}.
{xeZ|z*e{1,9}} ={-3,-1,1,3}.
{zeZ|z?€e{2,3}}=0.
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Cardinality & Infinity

“God made the integers, all else is the work of man.”

— Leopold Kronecker

Giuseppe Leopold David Hilbert Kurt Godel John von
Peano Kronecker Neumann



Size of Sets

Definition 43: The size of a finite set X, denoted | X |, is the number of elements it contains.

Examples:

« Let A={ ~,% ,& } then|A| = 3, since A contains exactly 3 elements.

Let B={@ ,© ,@ }. then|B| = 1, since B contains only one unique element (the kiwi).
|P({1,2,4 })| = 23 = 8, since the power set consists of all § possible subsets of {1,2, 4. }.
|@| = 0, since the empty set contains no elements.

+ |N| = o0, since there are infinitely many natural numbers.
+ |R| = o0, since there are infinitely many real numbers.
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Cardinality of Sets

Definition 44: The cardinality of a set X, denoted | X]|, is a measure of its “size”.

« For finite sets, cardinality | X| is the same as size, i.e., the number of elements in X.

« For infinite sets, cardinality | X | describes the “type” of infinity, e.g. countable vs uncountable.

Examples:
+ IN[ =X
- Q=X
. ’R’ = 2N0 = C

Note: |X]| is not just a number, but a cardinal number.

« Cardinal numbers extend natural numbers to describe sizes of infinite sets.

» The finite cardinal numbers are just natural numbers: 0,1,2,3, ....

+ The first (smallest) infinite cardinal is R (the cardinality of N).

« Arithmetic operations on cardinal numbers differ from those on natural numbers.
» For example, Ry +1 =Ny and R - 2 = V.
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Equinumerosity

Definition 45: Two sets A and B have the same cardinality and called equinumerous, denoted
|A| = |B| or A ~ B, iff there is a bijection (one-to-one correspondence) from A to B.

Theorem 10: Equinumerosity is an equivalence relation.

Proof: Let A, B, C be sets.

+ Reflexivity: The identity map id 4, : A — A, where id 4 (z) = z, is a bijection, so A ~ A.

« Symmetry: Suppose A ~ B, then there is a bijection f : A — B. Since it is a bijection, its inverse f~!
exists and is also a bijection. Hence, f~! : B — A is a bijection, so B ~ A.

« Transitivity: Suppose that A ~ B and B ~ C, i.e., there are bijections f : A - Bandg: B — C.
Then the composition go f : A — C'is also a bijection. So A ~ C.
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Countable Sets

Definition 46: A set called countable if it is either finite or has the same cardinality as the set of
natural numbers N. Alternatively, a set is countable if there is a bijection from N to that set.

When an infinite set is countable, its cardinality is denoted R, (“aleph-null”).

Example: |N_ 44 = {1,3,5,...}| = R, the set of odd natural numbers is countable, since there is a bijection
f:N— N, defined by f(n) =2n+ 1.

Example: [{x € N | z is prime}| = R, the set of prime numbers is countable.

Example: |Z| = R, the set of integers (—oo, ..., —2,—1,0,1,2, ..., 00) is countable, since there is a bijection

f N — Z defined by f(n):

e e [1O ) @ f®) @) 56) f6)
f<n>=<—1>n[§1={in7+l St I B S N R B Y I T}
0 —1 1 —2 2 -3 3
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Countability Constructions

Definition 47: A set X is enumerable if there is a surjection e : N — X (equivalently a bijection with
either N or an initial segment of N if X finite).

Theorem 11 (Zig-Zag Enumeration): N? is countable.

Proof: List pairs by diagonals of constant sum: (0, 0); (0, 1), (1,0); (0, 2), (1, 1), (2,0); ... giving a bijection
with N. O

Theorem 12: Q is countable.

Proof: Enumerate positive reduced fractions p/q ordered by p + ¢ and increasing p; skip non-reduced.
Interleave 0 and negatives. This yields enumeration, hence Q ~ N. O
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Pairing Functions

We say that f encodes A X B, and that f(a,b) is the code of the pair (a, b).

Example: The Cantor pairing function g : N> — N is defined as:

(n+k+Dm+k) |

g(nv k) = 9

Georg Cantor
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Uncountable Sets

Definition 49: A set is uncountable if it is not countable.

In order to prove that a set A is uncountable, we need to show that no bijection N — A can exist.

The general strategy for showing that is to use Cantor’s diagonal argument. Given a list of elements of A,
say Ty, Zq, ... (enumerated by natural numbers), we construct a new element of A that differs from each z;,
thus showing that the list cannot be complete, and hence no bijection can exist.

Theorem 13: B* is uncountable.
Proof: Recall that BY is the set of all infinite sequences of elements from B = {0, 1}.

For example, B“ contains sequences like 0000..., 010101..., 1110..., etc.

Suppose for contradiction that B is countable. Then we can enumerate its elements as x, z,, ..., where
each z; is an infinite sequence of bits, so we can represent it as x; = (b;1, b;2, b;3, -..), where b;; € B is the
j-th bit of the i-th sequence.
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Uncountable Sets [2]

Now we construct a new sequence A = (511 ,bog, bas, ) where b;; = 1 — b, i.e., we flip the i-th bit of

the i-th sequence. This sequence differs from each x; at least in the i-th position, so it cannot be equal to

any x;, so it is not in the enumeration z, z,, ...

1 2 3

Ty | by bip byg

Ty | byy bay  bog

T3 | bg; by bss

A | by by bgy
Since A is constructed from the bits, it is also an element of B¥. Thus, we have found an element of B that
is not in the enumeration x, z,, ..., contradicting the assumption that B“ is countable. O
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Sets of Different Sizes

Definition 50: The cardinality of a set A is less than or the same as the cardinality of a set B, denoted
|A| < |B| or A < B, if there is an injection (one-to-one function) from A to B.

Definition 51: Set A is smaller than B, denoted |A| < |B| or A < B, iff there is an injection, but
no bijection from A to B, ie., A < Band A # B.

Note: Using this notation, we can say that a set X is countable iff X <N, and uncountable iff N < X.

Example: {1,2} < {a,b,c}, since there is an injection f : {1,2} — {a,b, c} defined by f(1) = a and
f(2) = b, but no bijection exists.

Example: N < Z, since there is bijection (and thus an injection) f : N — Z.
Example: Z < N, since there is bijection (and thus an injection) f : Z — N.

Example: N < P(N), since there is an injection f(z) = {z}, but no bijection exists.
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Cantor’s Theorem

Theorem 14 (Cantor): A < P(A), for any set A.

Proof: The map f(z) = {z} is an injection f : A — P(A), since if z # y, then also {z} # {y} by
extensionality, and so f(x) # f(y). So we have that A < P(A).

It remains to show that A # B. For reductio, suppose A &~ B, i.e., there is some bijection g : A — B.
Now consider D = {z € A | = ¢ g(x)}. Note that D C A, so D € P(A). Since g is a bijection, there exists
some y € A such that g(y) = D. But now we have

yegly) iff yc Diff y ¢ g(y)

This is a contradiction, since y cannot be both in and not in g(y). Thus, A % P(A). O
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Schroder-Bernstein Theorem

Theorem 15 (Schréder—Bernstein): If A < B and B < A, then A ~ B.

In other words, if there are injections in both directions between two sets, then there is a bijection.

Proof: Obvious, but difficult. £ O
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Another Cantor’s Theorem

Let L be the unit line, i.e., the set of points [0, 1]. Let S be the unit square, i.e., the set of points L x L.

Theorem 16: L ~ S. L S

Proof”: Consider the function f : L — S defined by f(z) = (z, z). This is an injection, since if

f(a) = f(b), then (a,a) = (b,b),s0 a = b. Thus, L < S.

Now consider the function g : S — L that maps (x, y) to the real number obtained by interleaving the

decimal expansions of x and y.
z=0.7,7,75...
Y =0.y195y;--

This is an injection, since if g(a,b) = g(c,d), then a,, = ¢,, and b,, = d,, for all n € N, so (a,b) = (¢, d).

Thus, S < L.

} 9(z,y) = 0.2y, 2o Ys T3Y5...

By Schroder—Bernstein (Theorem 15), we have that L ~ S. O

*See https://math.stackexchange.com/a/183383 for more detailed analysis.
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Order Theory

“Order is heaven’s first law.”

— Alexander Pope

: &
Helmut Hasse ~ Alfred Tarski Emmy Noether Garrett Dana Scott  Felix Hausdorff
Birkhoff



Partially Ordered Sets

Definition 52: A partially ordered set (or poset) (S, <) is a set S equipped with a partial order <.

Definition 53: A chain in a poset (S, <) is a subset C' C S such that any two elements z,y € C
are comparable, i.e., either x < yory < z.

Definition 54: An element z € S is called a minimal element of a poset (S, <) if there is no “greater”
element y € S such that y < z (i.e., y < x and y # x).

Definition 55: A maximal element m satisfies: there is no y € S with m < y.

Note: There may be multiple maximal (or minimal) elements.
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Partially Ordered Sets [2]

Definition 56: The greatest element of a poset (S, <) is an element g € S that is greater than or equal
to every other element in S, ie., forallxz € S,z < g.

Definition 57: A least element (bottom) b satisfies b < x forall z € S.

Note: Greatest (top) and least (bottom) elements are unigue when they exist.

Examples:

« (P(A), C): least @, greatest A.

« (NT,|): least 1, no greatest element.

+ (Z,<): no least or greatest element.
({1

{1,

...,6}, ]): least 1, no greatest element, maximal elements are 4, 5, 6.
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Upper and Lower Bounds

Definition 58: In a poset (S, <), an element u € S is called an upper bound of a subset C' C S if it is
greater than or equal to every element in C, i.e., forallx € C, x < u.

Definition 59: In a poset (S, <), an element | € S is called a lower bound of a subset C' C S if it is
less than or equal to every element in C, i.e,, forallz € C, [ < z.

Examples:
+ In (R, <) for interval C = (0,1): every < 0 is a lower bound; every > 1 an upper bound.
« In (P(A),C) for C = {{1,2},{1, 3}}: lower bounds include {1}, @; upper bounds include {1, 2, 3}.

« In (Z,|) for C = {4, 6}: upper bounds are multiples of 12; least upper bound 12; lower bounds are
divisors of 2; greatest lower bound 2.
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Suprema and Infima

Definition 60: In a poset (S, <), the supremum (or join) of a subset C C S, denoted sup(C) or \/ C, is
the least upper bound of C, i.e., an upper bound u € S s.t. for any other upper bound v € S, u < v.

Note: If it exists, the least upper bound is unique.

Definition 61: In a poset (S, <), the infimum (or meet) of a subset C' C S, denoted inf(C) or A C, is
the greatest lower bound of C, i.e., a lower bound | € S s.t. for any other lower bound m € S, m <.

Note: If it exists, the greatest lower bound is unique.

Examples:

+ (R,<):sup({0,1}) = 1,inf({0,1}) = 0, i.e,, sup(C) = max(C), inf(C) = min(C).

« (P(A),C):sup = U, inf = N.

« Divisibility on N, y: sup{a, b} = lecm(a, b) (if any common multiple), inf{a, b} = gecd(a, b).
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Lattices

Definition 62: A poset (S, <) where every non-empty finite subset C' C S has a join (supremum) is
called an upper semilattice (or join-semilattice) and denoted (S, V).

Definition 63: A poset (S, <) where every non-empty finite subset C' C S has a meet (infimum) is
called a lower semilattice (or meet-semilattice) and denoted (S, A).

Definition 64: A poset (S, <) that is both an upper semilattice and a lower semilattice, i.e., every
non-empty finite subset has both a join and a meet, is called a lattice, denoted (S, V, A).
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Why Lattices?

Why study lattices? Whenever you have:
« Elements that can be compared (ordered)
« Ways to combine elements (join, meet)
 Consistent behavior under combination

...you likely have a lattice! This structure appears in programming languages, databases, security
systems, logic circuits, and many other areas of computer science and mathematics.

80 /91



Properties of Lattices

Definition 65: A lattice is bounded if it has a greatest element T and a least element L.
Definition 66: A lattice is distributiveif x A (y V z) = (x Ay) V ( A 2z) (and dually).

Definition 67: A lattice is modularif z < z impliesz V (y A z) = (z V y) A 2.

Note: Distributive = modular.

Example (Powerset Lattice): (P(A), C) is a bounded distributive lattice with V =U,A =N, T = A, L = Q.

Why this matters: This is the foundation of set-based reasoning in:
« Database theory (relational algebra)

« Formal specification languages (Z, B-method)

« Model checking and verification
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Examples of Lattices

Example (Divisibility Lattice): For positive integers, a < b iff a divides b.

« Join: Least Common Multiple (LCM)

» Meet: Greatest Common Divisor (GCD)

« Used in: Number theory, cryptography (RSA), computer algebra systems

Example (Partition Lattice): All partitions of a set S, ordered by refinement.
« m; < Ty if 7 is a refinement of 7, (smaller blocks)

« Join: Coarsest common refinement

« Meet: Finest common coarsening

« Applications: Clustering, database normalization

Lattices aren’t just abstract algebra — they appear everywhere in computer science and mathematics.

The join and meet operations capture fundamental patterns of combination and interaction.
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Why Lattices Matter [1]: Information Security Levels

Example: In computer security, information has classification levels forming a lattice:

Top Secret
+ Elements: {Public, Internal, Confidential, Secret, Top Secret} T
« Order: Public < Internal < Confidential < Secret < Top Secret Secret

Join (V): Higher classification needed to combine information

Meet (A): Lower classification that both pieces can be declassified to
] Confidential
For instance:

 Internal vV Confidential = Confidential (combination needs higher level)
« Secret A Confidential = Confidential (both can be declassified to this level) Internal

Public
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Why Lattices Matter [2]: Program Analysis and Type Systems

Example: In programming language theory, types form lattices:

Subtype Lattice:

o Order: int C number C any, string C any

« Join: Most general common supertype (for union types)

« Meet: Most specific common subtype (for intersection types)

Control Flow Analysis:

 Elements: Sets of possible program states

+ Order: Subset inclusion (C)

« Join: Union of possible states (at merge points)
« Meet: Intersection of guaranteed properties
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Why Lattices Matter [3]: Database Query Optimization

Example: Query execution plans form a lattice:

« Elements: Different ways to execute a query

o Order: “Plan A < Plan B” if A is more efficient than B
« Join: Combine optimization strategies

+ Meet: Find common optimizations

This structure helps database optimizers systematically explore the space of possible query plans.
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Why Lattices Matter [4]: Concept Hierarchies and Ontologies

Example: Knowledge representation uses concept lattices.

For example, consider a biological taxonomy:

Animal

[\

Mammal Bird
A A

Dog Eagle

Elements: Biological concepts (e.g., Animal, Mammal, Dog)

+ Order: “Concept A < Concept B” if A is a more specific type of B, e.g., “Dog < Mammal”
« Join: Most specific common ancestor, e.g., “Mammal V Bird = Animal”

+ Meet: Most general common descendant, e.g., “Bird A Eagle = Eagle”
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Why Lattices Matter [5]: Distributed Systems and Causality

Example: In distributed systems, events form a lattice under causality:

« Elements: System events with vector timestamps

+ Order: “Event A < Event B” if A causally precedes B
« Join: Latest information from both events

+ Meet: Common causal history

This structure is crucial for:

- Consistent distributed databases

« Version control systems (Git DAG)
« Blockchain consensus algorithms
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Why Lattices Matter [6]: Logic and Boolean Reasoning

Example: Propositional formulas form lattices:

« Elements: Boolean formulas over variables

» Order: ¢ < 9 if @ implies 9 (semantic entailment)
« Join: Disjunction (V) — weaker condition

+ Meet: Conjunction (A) — stronger condition

Special case: Boolean algebra (true, false, V, A, =) used in:
« Digital circuit design

« Database query languages (SQL WHERE clauses)

« Search engines (Boolean search)

88 /91



TODO

« Applications of lattices in:

» Formal concept analysis

» Domain theory in computer science

» Algebraic topology

» Cryptography (lattice-based cryptography)
« Advanced topics in set theory:

» Cardinal arithmetic

» Ordinal numbers

» Forcing and independence results

» Large cardinals
« Connections to Boolean algebra (next lecture)
« Applications in formal logic and proof theory
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Looking Ahead: Boolean Algebra

The next lecture will explore Boolean algebra, which provides the mathematical foundation for:
« Digital circuit design and computer hardware

« Propositional logic and automated reasoning

» Database query optimization

» Formal verification of software and hardware systems

Key topics will include:

+ Boolean functions and their representations

Normal forms (CNF, DNF)

Minimization techniques (Karnaugh maps, Quine-McCluskey)

Functional completeness and Post’s theorem

The satisfiability problem (SAT) and its computational complexity
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Preview: Formal Logic

Following Boolean algebra, we will study formal logic, covering:
« Propositional and predicate logic

Natural deduction and proof systems

+ Completeness and soundness theorems

» Applications to program verification and Al reasoning

This progression from sets — relations — functions — Boolean algebra — logic provides a solid
foundation for advanced topics in discrete mathematics and computer science.

Binary relations are the bridge between sets and functions — they model how objects connect,
organize, and interact in mathematical structures and real-world systems.
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