
Set Theory
Discrete Math, Fall 2025
Konstantin Chukharev

Set Theory
“A set is a Many that allows itself to be thought of as a One.”

— Georg Cantor

Georg Cantor Richard
Dedekind

Bertrand
Russell

Ernst Zermelo Abraham
Fraenkel

Introduction
Set theory provides a foundational language for all of mathematics. Everything from numbers and functions
to spaces and relations can be defined using sets. This lecture introduces the basic objects and operations of
set theory and explores their deep structural and logical consequences.

Topics include:
• Basic concepts: elements, subsets, operations
• Relations and functions as sets
• Infinite sets and cardinality
• Axiomatic foundations
• Applications in logic and computer science

3 / 82

Basic Notions

Definition 1 : A set is an unordered collection of distinct objects, called elements.

• In naïve set theory, sets can contain any objects (including non-sets, called urelements).
• In modern axiomatic set theory, everything is a set (no urelements).

Example : 𝐴 = {5,🐨,🐦} is a set of three elements: the number 5, a koala, and a birb.

Notation: 𝑎 ∈ 𝐴 means “𝑎 is an element of 𝐴”.

Example : “🐨 ∈ 𝐴” is true, while “🐧 ∈ 𝐴” is false, denoted as “🐧 ∉ 𝐴”.

Definition 2 (Extensionality) : Two sets are equal, denoted 𝐴 = 𝐵, if they have the same elements,
that is, iff every element of 𝐴 is also in 𝐵, and vice versa. Formally, 𝐴 = 𝐵 iff 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴.

Example : {𝑎, 𝑏, 𝑏} = {𝑎, 𝑏} = {𝑏, 𝑎} = {𝑏, 𝑎, 𝑏}, all these denote the same set with elements 𝑎 and 𝑏.

4 / 82

Set-Builder Notation

Definition 3 : A set can be defined using set-builder notation (set comprehension):

𝐴 = {𝑥 | 𝑃 (𝑥)}

meaning “the set of all 𝑥 such that the property 𝑃(𝑥) holds”.

Example : 𝐴 = {𝑥 | 𝑥 ∈ ℕ ∧ 𝑥 > 5} is the set of natural numbers greater than 5, that is, 𝐴 = {6, 7, 8, …}.

Example : 𝑆 = {𝑥2 | 𝑥 is prime} = {4, 9, 25, 49, …} is the set of squares of prime numbers¹.

Example : ℚ = {𝑎/𝑏 | 𝑎 ∈ ℤ, 𝑏 ∈ ℕ, 𝑏 ≠ 0} is the set of rational numbers (fractions).

¹Note: 1 is not a prime number.
5 / 82

Subsets

Definition 4 : A set 𝐴 is a subset of 𝐵, denoted 𝐴 ⊆ 𝐵, if every element of 𝐴 is also an element of 𝐵.
• Formally, 𝐴 ⊆ 𝐵 ⟺ ∀𝑥. (𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵).
• If 𝐴 is not a subset of 𝐵, we write 𝐴 ⊈ 𝐵.
• If 𝐴 ⊆ 𝐵 and 𝐴 ≠ 𝐵, we say 𝐴 is a proper (or strict) subset of 𝐵, denoted 𝐴 ⊂ 𝐵 or 𝐴 ⊊ 𝐵.
• If 𝐴 is a subset of 𝐵, denoted 𝐴 ⊆ 𝐵, then 𝐵 is a superset of 𝐴, denoted 𝐵 ⊇ 𝐴.

Example : Every set is a subset of itself: 𝐴 ⊆ 𝐴.

Example : The empty set is a subset of every set: ∅ ⊆ 𝐴 for any set 𝐴.

Example : The set of even numbers is a proper subset of the set of integers: ℤeven ⊂ ℤ.

Example : {𝑎, 𝑏} ⊆ {𝑎, 𝑏, 𝑐}, but {𝑎, 𝑏, 𝑥} ⊈ {𝑎, 𝑏, 𝑐}.

Example : {0} ∈ {0, {0}} and {0} ⊆ {0, {0}}, that is, {0} is an element, and also a subset.

6 / 82

Power Sets

Definition 5 : The power set of a set 𝐴, denoted 2𝐴 or 𝒫(𝐴), is the set of all subsets of 𝐴.

𝒫(𝐴) = {𝑆 | 𝑆 ⊆ 𝐴}

Example : If 𝐴 = {𝑎, 𝑏}, then 𝒫(𝐴) = {∅, {𝑎}, {𝑏}, {𝑎, 𝑏}}.

Example : If 𝐴 = {1, 2, 3}, then 𝒫(𝐴) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Example : The power set of the empty set is 𝒫(∅) = {∅}, a non-empty set containing the empty set.

Theorem 1 : |𝒫(𝐴)| = 2|𝐴| for any finite set 𝐴.

Proof (combinatorial) : For each of the 𝑛 elements in the set, we can either include it in a subset or not.
These 𝑛 independent binary choices yield 2𝑛 possible subsets by the multiplication principle.

2 × 2 × … × 2⏟⏟⏟⏟⏟⏟⏟
𝑛 times

= 2𝑛 □

7 / 82

Power Sets [2]
Proof : By induction on 𝑛 = |𝐴|, the cardinality of the set 𝐴.

Base case: If 𝑛 = 0, then 𝐴 = ∅ and 𝒫(𝐴) = {∅}. Thus, |𝒫(𝐴)| = 1 = 20.

Inductive step: Assume the formula holds for any set of size 𝑘. Let 𝐴 be a set with |𝐴| = 𝑘 + 1. Choose an
arbitrary element 𝑎 ∈ 𝐴 and let 𝐴′ = 𝐴 \ {𝑎}, so |𝐴′| = 𝑘.

The power set 𝒫(𝐴) can be partitioned into two disjoint collections:
1. Subsets of 𝐴 that do not contain 𝑎. This collection is exactly 𝒫(𝐴′). By the inductive hypothesis, it has

|𝒫(𝐴′)| = 2𝑘 elements.
2. Subsets of 𝐴 that do contain 𝑎. Each such subset is of the form 𝑆 ∪ {𝑎} where 𝑆 ⊆ 𝐴′. This establishes

a bijection with 𝒫(𝐴′), so this collection also has 2𝑘 elements.

The total number of subsets of 𝐴 is the sum of their sizes: |𝒫(𝐴)| = 2𝑘 + 2𝑘 = 2 ⋅ 2𝑘 = 2𝑘+1. □

8 / 82

Hasse Diagram of Power Set
The elements of the power set of {𝑎, 𝑏, 𝑐} ordered with respect to inclusion (⊆):

{𝑎, 𝑏, 𝑐}

{𝑎, 𝑏} {𝑎, 𝑐} {𝑏, 𝑐}

{𝑎} {𝑏} {𝑐}

∅

9 / 82

Some Important Sets
Example : ℕ = {0, 1, 2, …} is the set of natural numbers.

Example : ℤ = {…, −2, −1, 0, 1, 2, …} is the set of integers.

Example : ℚ = {𝑎/𝑏 | 𝑎 ∈ ℤ, 𝑏 ∈ ℕ, 𝑏 ≠ 0} is the set of rational numbers.

Example : ℝ = (−∞, +∞) is the set of real numbers (the continuum).

Example : 𝔹 = {0, 1} is the set of Boolean values (truth values).

Example : The set 𝐴∗ of finite strings over an alphabet 𝐴 is defined as:

𝐴∗ = {𝜀} ∪ {𝑎1𝑎2…𝑎𝑛 | 𝑛 ∈ ℕ, 𝑎𝑖 ∈ 𝐴} = ⋃
𝑛∈ℕ

𝐴𝑛

For example, 𝔹∗ = {𝜀, 0, 1, 00, 01, 10, 11, 001, 010, 011, 100, 101, 110, 111, 0000, …}.

Example : The set 𝐴𝜔 of infinite sequences over 𝐴.

10 / 82

Operations on Sets

Operation Notation Formal definition
Union 𝐴 ∪ 𝐵 {𝑥 | 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}
Intersection 𝐴 ∩ 𝐵 {𝑥 | 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}
Difference 𝐴 \ 𝐵 {𝑥 | 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵}
Symmetric diff. 𝐴 △ 𝐵 (𝐴 \ 𝐵) ∪ (𝐵 \ 𝐴)
Complement 𝐴 or 𝐴𝑐 {𝑥 | 𝑥 ∉ 𝐴}
Power set 2𝐴 or 𝒫(𝐴) {𝑆 | 𝑆 ⊆ 𝐴}

11 / 82

Venn Diagrams and Euler Circles

Definition 6 : A Venn diagram is a visual representation of sets and their relationships using
overlapping circles or closed curves. Each circle represents a set, and overlapping regions show
intersections.

Definition 7 : Euler circles (or Euler diagrams) are a simpler form where circles may or may not
overlap, and non-overlapping regions represent disjoint sets.

Example : For sets 𝐴 = {1, 2, 3} and 𝐵 = {2, 3, 4}:
• 𝐴 ∩ 𝐵 = {2, 3} (overlapping region)
• 𝐴 \ 𝐵 = {1} (left-only region)
• 𝐵 \ 𝐴 = {4} (right-only region)
• 𝐴 ∪ 𝐵 = {1, 2, 3, 4} (entire diagram)

12 / 82

Laws of Set Operations
For any sets 𝐴, 𝐵, and 𝐶 :

Commutative Laws:
• 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴
• 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴

Associative Laws:
• (𝐴 ∪ 𝐵) ∪ 𝐶 = 𝐴 ∪ (𝐵 ∪ 𝐶)
• (𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐵 ∩ 𝐶)

Distributive Laws:
• 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)
• 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)

De Morgan’s Laws:
• 𝐴 ∪ 𝐵 = 𝐴 ∩ 𝐵
• 𝐴 ∩ 𝐵 = 𝐴 ∪ 𝐵

Identity Laws:
• 𝐴 ∪ ∅ = 𝐴, 𝐴 ∩ 𝑈 = 𝐴 (where 𝑈 is the

universal set)
• 𝐴 ∩ ∅ = ∅, 𝐴 ∪ 𝑈 = 𝑈

Complement Laws:
• 𝐴 ∪ 𝐴 = 𝑈 , 𝐴 ∩ 𝐴 = ∅
• 𝐴 = 𝐴 (double complement)

13 / 82

Tuples and Ordered Pairs

Definition 8 : A tuple is an ordered collection of elements, denoted (𝑎1, 𝑎2, …, 𝑎𝑛).

A tuple of length 𝑛 is called an n-tuple.

Example : (42,🦀,😾,🥝) is a 4-tuple.

Definition 9 : An ordered pair ⟨𝑎, 𝑏⟩ is a special 2-tuple, defined² as:

⟨𝑎, 𝑏⟩ ≝ {{𝑎}, {𝑎, 𝑏}}

Example : ⟨🎃,🧙⟩ ≠ ⟨🧙,🎃⟩, these are different ordered pairs.

Example : ⟨🌵,🌵⟩ ≠ (🌵,) ≠🌵 ≠ {🌵}, these are all different objects: an ordered pair, a 1-tuple,
an urelement, and a singleton set. Note, however, that ⟨🌵,🌵⟩ = {{🌵}}.

²Kuratowski’s definition is the most cited and now-accepted definition of an ordered pair. For others, see wiki.
14 / 82

https://en.wikipedia.org/wiki/Ordered_pair#Defining_the_ordered_pair_using_set_theory

Cartesian Product

Definition 10 : The Cartesian product of two sets 𝐴 and 𝐵, denoted 𝐴 × 𝐵, is defined as:

𝐴 × 𝐵 = {⟨𝑎, 𝑏⟩ | 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}

Example : If 𝐴 = {1, 2} and 𝐵 = {𝑥, 𝑦, 𝑧}, then their product is

𝐴 × 𝐵 = {⟨1, 𝑥⟩, ⟨1, 𝑦⟩, ⟨1, 𝑧⟩, ⟨2, 𝑥⟩, ⟨2, 𝑦⟩, ⟨2, 𝑧⟩}

Definition 11 : The n-fold Cartesian product (also known as Cartesian power) of a set 𝐴 is defined as:

𝐴𝑛 = 𝐴 × 𝐴 × … × 𝐴⏟⏟⏟⏟⏟⏟⏟
𝑛 times

= {(𝑎1, 𝑎2, …, 𝑎𝑛) | 𝑎𝑖 ∈ 𝐴}

Example : {𝑎, 𝑏}3 = {(𝑎, 𝑎, 𝑎), (𝑎, 𝑎, 𝑏), (𝑎, 𝑏, 𝑎), (𝑎, 𝑏, 𝑏), (𝑏, 𝑎, 𝑎), (𝑏, 𝑎, 𝑏), (𝑏, 𝑏, 𝑎), (𝑏, 𝑏, 𝑏)}

Example : {🦅}3 = {(🦅,🦅,🦅)}, the singleton set containing the 3-tuple of three eagles.

Example : 𝐴0 = {()}, the singleton set containing the empty tuple.
15 / 82

Geometric Interpretation of Cartesian Product
The Cartesian product 𝐴 × 𝐵 can be visualized as a region on the coordinate plane, where each point ⟨𝑎, 𝑏⟩
represents an element of the product.

Example : If 𝐴 = [1, 4) and 𝐵 = (2, 4], then 𝐴 × 𝐵 represents the rectangular region: {(𝑥, 𝑦) | 1 ≤ 𝑥 <
4 and 2 < 𝑦 ≤ 4}

Example : For discrete sets 𝐴 = {1, 2, 3} and 𝐵 = {1, 2}, the product 𝐴 × 𝐵 consists of 6 points:
(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2) arranged in a grid pattern.

Example : The set difference (𝐴 × 𝐵) \ (𝐶 × 𝐷) where:
• 𝐴 × 𝐵 = [0, 3] × [0, 2] (outer rectangle)
• 𝐶 × 𝐷 = (1, 2) × (0.5, 1.5) (inner rectangle to subtract)

Results in an “L-shaped” region.

16 / 82

Geometric Interpretation of Cartesian Product [2]

𝑥1 2 3 4 5

𝑦

1

2

3

4

0

𝐴 = [1; 4)

𝐵
=

(2
;4

]

𝐴 × 𝐵

𝐴 × 𝐵 = [1, 4) × (2, 4]

𝑥1 2 3 4 5

𝑦

1

2

3

4

0

𝐴 = (1; 5]

𝐵
=

(1
;4

]

𝐶 = [2; 3]

𝐷
=

(2
;3

) (𝐴 × 𝐵) \ (𝐶 × 𝐷)

(𝐴 × 𝐵) \ (𝐶 × 𝐷) =
((1; 5] × (1; 4]) \ ([2; 3] × (2; 3))

17 / 82

Russell’s Paradox

Bertrand Russell

Suppose a set can be either “normal” or “unusual”.
• A set is considered normal if it does not contain itself as an element. That is, 𝐴 ∉ 𝐴.
• Otherwise, it is unusual. That is, 𝐴 ∈ 𝐴.

Note: being “normal” or “unusual” is a predicate 𝑃(𝑥) that can be applied to any set 𝑥.

Consider the set 𝑅 of all normal sets: 𝑅 = {𝐴 | 𝐴 ∉ 𝐴}.

The paradox arises when we ask: Is 𝑅 a normal set?
• Suppose 𝑅 is normal. By its definition, 𝑅 must be an element of 𝑅, so 𝑅 ∈ 𝑅. But elements of 𝑅 are

normal sets, and normal sets do not contain themselves. So 𝑅 ∉ 𝑅. Contradiction.
• Suppose 𝑅 is unusual. This means 𝑅 contains itself, so 𝑅 ∈ 𝑅. But the definition of 𝑅 only includes sets

that do not contain themselves. So 𝑅 cannot be a member of 𝑅, i.e. 𝑅 ∉ 𝑅. Contradiction.

A contradiction is reached in both cases. The only possible conclusion is that the set 𝑅 cannot exist.

This paradox showed that unrestricted comprehension — the ability to form a set from any arbitrary
property — is logically inconsistent.

18 / 82

https://en.wikipedia.org/wiki/Bertrand_Russell

From Naïve to Axiomatic Set Theory

Definition 12 : Naïve set theory allows unrestricted set formation: for any property 𝑃(𝑥), we can form
the set {𝑥 | 𝑃 (𝑥)}. Russell’s paradox shows this leads to contradictions.

Definition 13 : Axiomatic set theory restricts set formation through a system of axioms.

The most widely accepted system is Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC).

19 / 82

ZFC Axioms
1. Extensionality: Sets with the same elements are equal.
2. Empty Set: There exists a set ∅ with no elements.
3. Pairing: For any 𝑎 and 𝑏, there exists a set {𝑎, 𝑏}.
4. Union: For any collection of sets, their union exists.
5. Power Set: For any set 𝐴, the power set 𝒫(𝐴) exists.
6. Infinity: There exists an infinite set (containing ℕ).
7. Separation: From any set 𝐴 and property 𝑃 , we can form {𝑥 ∈ 𝐴 | 𝑃(𝑥)}.
8. Replacement: If 𝐹 is a function-like relation, then for any set 𝐴, the image 𝐹[𝐴] exists.
9. Foundation: Every non-empty set has a minimal element (prevents self-membership).

10. Choice: Every collection of non-empty sets has a choice function.

Note : The Separation axiom prevents Russell’s paradox by only allowing formation of subsets from
existing sets, not arbitrary collections.

20 / 82

Relations
“In mathematics you don’t understand things. You just get used to them.”

— John von Neumann

René Descartes Évariste Galois Ernst Schröder Michael Rabin Herbert Wilf

Relations as Sets

Definition 14 : A binary relation 𝑅 on sets 𝐴 and 𝐵 is a subset of the Cartesian product 𝐴 × 𝐵.

Notation: If 𝑅 ⊆ 𝐴 × 𝐵, we write “𝑎 𝑅 𝑏” to mean that element 𝑎 ∈ 𝐴 is related to element 𝑏 ∈ 𝐵.

Formally, 𝑎 𝑅 𝑏 iff ⟨𝑎, 𝑏⟩ ∈ 𝑅.

Note: 𝑅 is used to denote both the relation itself (𝑎 𝑅 𝑏) and the set of pairs (𝑅 ⊆ 𝐴 × 𝐵).

Note: the order of elements in the pair matters: ⟨𝑎, 𝑏⟩ ∈ 𝑅 denotes that 𝑎 is related to 𝑏, not the other way
around, unless there is another pair ⟨𝑏, 𝑎⟩ in the relation.

Example : 𝑅 = {⟨𝑛, 𝑘⟩ | 𝑛, 𝑘 ∈ ℕ and 𝑛 < 𝑘}

Definition 15 :
• A binary relation 𝑅 ⊆ 𝐴 × 𝐵 on two different sets 𝐴 and 𝐵 is called heterogeneous.
• A binary relation 𝑅 ⊆ 𝑀2 on the same set 𝑀 is called homogeneous.

22 / 82

Graph Representation

Definition 16 : A homogeneous relation 𝑅 ⊆ 𝑀2 can be represented as a directed graph where:
• Vertices correspond to elements of 𝑀
• There is a directed edge from 𝑥 to 𝑦 if 𝑥 𝑅 𝑦, i.e. ⟨𝑥, 𝑦⟩ ∈ 𝑅

Example : For 𝑀 = {1, 2, 3} and 𝑅 = {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}, the graph has vertices {1, 2, 3} and directed
edges 1 → 2, 2 → 3, and 1 → 3.

1 2

3

1 𝑅 2

2
𝑅

31
𝑅

3

23 / 82

Matrix Representation

Definition 17 : A binary relation 𝑅 ⊆ 𝐴 × 𝐵 can be represented as a matrix 𝑀𝑅 = ⟦𝑅⟧ where:
• Rows correspond to elements of 𝐴
• Columns correspond to elements of 𝐵
• 𝑀𝑅[𝑖, 𝑗] = 1 if 𝑎𝑖 𝑅 𝑏𝑗, and 𝑀𝑅[𝑖, 𝑗] = 0 otherwise

Example : Let 𝐴 = {𝑎, 𝑏, 𝑐}, 𝐵 = {𝑥, 𝑦}, and 𝑅 = {⟨𝑎, 𝑥⟩, ⟨𝑏, 𝑥⟩, ⟨𝑐, 𝑦⟩}. The matrix representation is:

⟦𝑅⟧ =
(
((
(1

1
0

0
0
1)
))
) where rows are {𝑎, 𝑏, 𝑐} and columns are {𝑥, 𝑦}

24 / 82

Special Relations

Definition 18 : For any set 𝑀 , we define these special relations:
• Empty relation: ∅ ⊆ 𝑀2 (no elements are related)
• Identity relation: 𝐼𝑀 = {⟨𝑥, 𝑥⟩ | 𝑥 ∈ 𝑀} (each element related only to itself)
• Universal relation: 𝑈𝑀 = 𝑀2 (every element related to every element)

Example : For 𝑀 = {𝑎, 𝑏, 𝑐}:
• Empty: ∅
• Identity: {⟨𝑎, 𝑎⟩, ⟨𝑏, 𝑏⟩, (𝑐, 𝑐)}
• Universal: {⟨𝑎, 𝑎⟩, ⟨𝑎, 𝑏⟩, ⟨𝑎, 𝑐⟩⟨𝑏, 𝑎⟩, ⟨𝑏, 𝑏⟩, ⟨𝑏, 𝑐⟩, ⟨𝑐, 𝑎⟩, ⟨𝑐, 𝑏⟩, ⟨𝑐, 𝑐⟩} (all 9 pairs)

25 / 82

Operations on Relations

Definition 19 : For relations 𝑅, 𝑆 ⊆ 𝐴 × 𝐵:
• Union: 𝑅 ∪ 𝑆 = {⟨𝑎, 𝑏⟩ | ⟨𝑎, 𝑏⟩ ∈ 𝑅 or ⟨𝑎, 𝑏⟩ ∈ 𝑆}
• Intersection: 𝑅 ∩ 𝑆 = {⟨𝑎, 𝑏⟩ | ⟨𝑎, 𝑏⟩ ∈ 𝑅 and ⟨𝑎, 𝑏⟩ ∈ 𝑆}
• Complement: 𝑅 = (𝐴 × 𝐵) \ 𝑅

Definition 20 : For a relation 𝑅 ⊆ 𝐴 × 𝐵, the converse (or inverse) relation is:

𝑅−1 = {⟨𝑏, 𝑎⟩ | ⟨𝑎, 𝑏⟩ ∈ 𝑅} ⊆ 𝐵 × 𝐴

Example : If 𝑅 = {⟨1, 𝑥⟩, ⟨2, 𝑦⟩, ⟨2, 𝑧⟩}, then 𝑅−1 = {⟨𝑥, 1⟩, ⟨𝑦, 2⟩, ⟨𝑧, 2⟩}.

26 / 82

Closures of Relations

Definition 21 : Let 𝑅 ⊆ 𝑀2 be a relation. The closures of 𝑅 are the smallest relations containing 𝑅
with specific properties:

• Reflexive closure: 𝑅+ = 𝑅 ∪ 𝐼𝑀
• Symmetric closure: 𝑅𝑠 = 𝑅 ∪ 𝑅−1

• Transitive closure: 𝑅∗ is the smallest transitive relation containing 𝑅

27 / 82

Properties of Homogeneous Relations

Definition 22 : A relation 𝑅 ⊆ 𝑀2 is reflexive if every element is related to itself:

∀𝑥 ∈ 𝑀. (𝑥 𝑅 𝑥)

Definition 23 : A relation 𝑅 ⊆ 𝑀2 is symmetric if for every pair of elements, if one is related to the
other, then the reverse is also true:

∀𝑥, 𝑦 ∈ 𝑀. (𝑥 𝑅 𝑦) → (𝑦 𝑅 𝑥)

Definition 24 : A relation 𝑅 ⊆ 𝑀2 is transitive if for every three elements, if the first is related to the
second, and the second is related to the third, then the first is also related to the third:

∀𝑥, 𝑦, 𝑧 ∈ 𝑀. (𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧) → (𝑥 𝑅 𝑧)

28 / 82

More Properties

Definition 25 : A relation 𝑅 ⊆ 𝑀2 is irreflexive if no element is related to itself:

∀𝑥 ∈ 𝑀. (𝑥 𝑅 𝑥)

Definition 26 : A relation 𝑅 ⊆ 𝑀2 is antisymmetric if for every pair of elements, if both are related to
each other, then they must be equal:

∀𝑥, 𝑦 ∈ 𝑀. (𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥) → (𝑥 = 𝑦)

Definition 27 : A relation 𝑅 ⊆ 𝑀2 is asymmetric if for every pair of elements, if one is related to the
other, then the reverse is not true:

∀𝑥, 𝑦 ∈ 𝑀. (𝑥 𝑅 𝑦) → (𝑦 𝑅 𝑥)

Note : irreflexive + antisymmetric = asymmetric.

29 / 82

Additional Properties

Definition 28 : A relation 𝑅 ⊆ 𝑀2 is:

• Coreflexive if 𝑅 ⊆ 𝐼𝑀 (only related to themselves, if at all):

∀𝑥, 𝑦 ∈ 𝑀. (𝑥 𝑅 𝑦) → (𝑥 = 𝑦)

• Left Euclidean if whenever an element is related to two others, those two are related:

∀𝑥, 𝑦, 𝑧 ∈ 𝑀. (𝑥 𝑅 𝑦 ∧ 𝑥 𝑅 𝑧) → (𝑦 𝑅 𝑧)

• Right Euclidean if whenever two elements are both related to a third, they are related to each other:

∀𝑥, 𝑦, 𝑧 ∈ 𝑀. (𝑦 𝑅 𝑥 ∧ 𝑧 𝑅 𝑥) → (𝑦 𝑅 𝑧)

Example :
• Identity relation 𝐼𝑀 is coreflexive. Any subset of 𝐼𝑀 is also coreflexive.
• Equality relation “=” is left and right Euclidean.
• “Being in the same equivalence class” is Euclidean in both directions.

30 / 82

Equivalence Relations

Definition 29 : A relation 𝑅 ⊆ 𝑀2 is an equivalence relation if it is reflexive, symmetric and transitive.

Definition 30 : Let 𝑅 ⊆ 𝑀2 be an equivalence relation on a set 𝑀 . The equivalence class of an
element 𝑥 ∈ 𝑀 under 𝑅 is the set of all elements related to 𝑥:

[𝑥]𝑅 = {𝑦 ∈ 𝑀 | 𝑥 𝑅 𝑦}

Definition 31 : The quotient set of 𝑀 by the equivalence relation 𝑅 is the set of all equivalence classes:

𝑀/𝑅 = {[𝑥]𝑅 | 𝑥 ∈ 𝑀}

Theorem 2 : If 𝑅 ⊆ 𝑀2 is an equivalence relation, then 𝑥 𝑅 𝑦 iff [𝑥]𝑅 = [𝑦]𝑅 for all 𝑥, 𝑦 ∈ 𝑀 .

31 / 82

Partitions

Definition 32 : A partition 𝒫 of a set 𝑀 is a family of non-empty, pairwise-disjoint subsets whose
union is 𝑀 :
• (Non-empty) ∀𝐵 ∈ 𝒫. (𝐵 ≠ ∅)
• (Disjoint) ∀𝐵1, 𝐵2 ∈ 𝒫. (𝐵1 ≠ 𝐵2) → (𝐵1 ∩ 𝐵2 = ∅)
• (Cover) ⋃

𝐵∈𝒫
𝐵 = 𝑀

Elements of 𝒫 are blocks (or cells).

Example : For 𝑀 = {0, 1, 2, 3, 4, 5}: {{0, 2, 4}, {1, 3, 5}} (even / odd) and {{0, 5}, {1, 2, 3}, {4}} (arbitrary)
are partitions.

32 / 82

Partitions and Equivalence Relations

Theorem 3 (Equivalences ⇔ Partitions) : Each equivalence relation 𝑅 on 𝑀 yields the partition
𝒫𝑅 = {[𝑥]𝑅 | 𝑥 ∈ 𝑀}. Each partition 𝒫 yields an equivalence 𝑅𝒫 given by 𝑥𝑅𝒫𝑦 iff 𝑥, 𝑦 lie in the
same block. These constructions invert one another.

Proof (Sketch) : Classes of an equivalence are non-empty, disjoint, and cover 𝑀 . Conversely “same block”
relation is reflexive, symmetric, transitive. Composing the two constructions returns exactly the starting
equivalence relation or partition (they are mutually inverse up to equality of sets of ordered pairs). □

33 / 82

Orders

Definition 33 : A relation 𝑅 ⊆ 𝑀2 is called a preorder if it is reflexive and transitive.

Definition 34 : A partial order is a relation 𝑅 ⊆ 𝑀2 that is reflexive, antisymmetric, and transitive.

Definition 35 : A relation 𝑅 ⊆ 𝑀2 is connected if for every pair of distinct elements, either one is
related to the other or vice versa:

∀𝑥, 𝑦 ∈ 𝑀. (𝑥 ≠ 𝑦) → (𝑥 𝑅 𝑦 ∨ 𝑦 𝑅 𝑥)

Definition 36 : A partial order which is also connected is called a total order (or linear order).

34 / 82

Chains and Antichains

Definition 37 : In a partially ordered set (𝑀, ⪯):

• A chain is a subset 𝐶 ⊆ 𝑀 where every two elements are comparable. Formally:

∀𝑥, 𝑦 ∈ 𝐶. (𝑥 ⪯ 𝑦 or 𝑦 ⪯ 𝑥)

• An antichain is a subset 𝐴 ⊆ 𝑀 where no two distinct elements are comparable. Formally:

∀𝑥, 𝑦 ∈ 𝐴. (𝑥 ≠ 𝑦) → (𝑥 ⋠ 𝑦 and 𝑦 ⋠ 𝑥)

Example : Consider the divisibility relation | on {1, 2, 3, 4, 6, 12}:
• Chain: {1, 2, 4, 12} (since 1 ∣ 2 ∣ 4 ∣ 12)
• Chain: {1, 3, 6, 12} (since 1 ∣ 3 ∣ 6 ∣ 12)
• Antichain: {2, 3} (since 2 ∤ 3 and 3 ∤ 2)
• Antichain: {4, 6} (since 4 ∤ 6 and 6 ∤ 4)

35 / 82

Dilworth’s Theorem

Theorem 4 (Dilworth) : In any finite partially ordered set, the maximum size of an antichain equals
the minimum number of chains needed to cover the entire set.

Example : In the Boolean lattice 𝒫({𝑎, 𝑏}) with inclusion:
• Maximum antichain: {{𝑎}, {𝑏}} of size 2
• Minimum chain decomposition: {∅, {𝑎}} ∪ {{𝑏}, {𝑎, 𝑏}} with 2 chains

36 / 82

Examples of Orders
Example : Consider the no longer than relation ≼ on 𝔹∗: 𝑥 ≼ 𝑦 iff len(𝑥) ≤ len(𝑦). This is a preorder
(reflexive and transitive), and even connected, but not a partial order, since it is not antisymmetric: for
example, 01 ≼ 10 and 10 ≼ 01, but 01 ≠ 10.

Example : The subset relation ⊆ on 𝒫(𝐴) is a partial order (reflexive, antisymmetric, transitive); typically
not total, since not all subsets are comparable (e.g., 𝐴 = {1} and 𝐵 = {2, 3}).

Example : Divisibility | on 𝐷 = {1, 2, 3, 6}: 1|2|6, 1|3|6; 2 and 3 incomparable. Partial, not total.

Example : Lexicographic order on 𝐴𝑛 (induced by a total order on 𝐴) is a total order.

37 / 82

Composition of Relations

Definition 38 : The composition of two relations 𝑅 ⊆ 𝐴 × 𝐵 and 𝑆 ⊆ 𝐵 × 𝐶 is defined as:

𝑅 ; 𝑆 = 𝑆 ∘ 𝑅 = {⟨𝑎, 𝑐⟩ | ∃𝑏 ∈ 𝐵. (𝑎 𝑅 𝑏) ∧ (𝑏 𝑆 𝑐)}

38 / 82

Powers of Relations

Definition 39 : For a homogeneous relation 𝑅 ⊆ 𝑀2, we define powers of 𝑅:
• 𝑅0 = 𝐼𝑀 (identity relation)
• 𝑅1 = 𝑅
• 𝑅𝑛+1 = 𝑅𝑛 ∘ 𝑅 for 𝑛 ≥ 1

Example : Let 𝑀 = {1, 2, 3, 4} and 𝑅 = {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 4⟩} (successor relation).
• 𝑅1 = {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 4⟩}
• 𝑅2 = {⟨1, 3⟩, ⟨2, 4⟩} (two steps)
• 𝑅3 = {⟨1, 4⟩} (three steps)
• 𝑅4 = ∅ (no four-step paths)

Theorem 5 : For any relation 𝑅 on a finite set with 𝑛 elements:
• 𝑅+ = 𝑅1 ∪ 𝑅2 ∪ … ∪ 𝑅𝑛 is a transitive closure.
• 𝑅∗ = 𝑅0 ∪ 𝑅+ = 𝐼 ∪ 𝑅+ is a reflexive-transitive closure.

39 / 82

Associativity of Composition

Theorem 6 : Composition of relations is associative: (𝑅 ; 𝑆) ; 𝑇 = 𝑅 ; (𝑆 ; 𝑇).

Proof : Let 𝑅 ⊆ 𝐴 × 𝐵, 𝑆 ⊆ 𝐵 × 𝐶 , and 𝑇 ⊆ 𝐶 × 𝐷 be three relations.

(⊆): Let ⟨𝑎, 𝑑⟩ ∈ (𝑅 ; 𝑆) ; 𝑇 .
• By definition of composition: ∃𝑐 ∈ 𝐶. (⟨𝑎, 𝑐⟩ ∈ 𝑅 ; 𝑆) ∧ (⟨𝑐, 𝑑⟩ ∈ 𝑇).
• Since ⟨𝑎, 𝑐⟩ ∈ (𝑅 ; 𝑆), we have: ∃𝑏 ∈ 𝐵. (⟨𝑎, 𝑏⟩ ∈ 𝑅) ∧ (⟨𝑏, 𝑐⟩ ∈ 𝑆).
• From ⟨𝑏, 𝑐⟩ ∈ 𝑆 and ⟨𝑐, 𝑑⟩ ∈ 𝑇 , we have: ⟨𝑏, 𝑑⟩ ∈ 𝑆 ; 𝑇 .
• From ⟨𝑎, 𝑏⟩ ∈ 𝑅 and ⟨𝑏, 𝑑⟩ ∈ 𝑆 ; 𝑇 , we have: ⟨𝑎, 𝑑⟩ ∈ 𝑅 ; (𝑆 ; 𝑇).

(⊇): Let ⟨𝑎, 𝑑⟩ ∈ 𝑅 ; (𝑆 ; 𝑇).
• By definition of composition: ∃𝑏 ∈ 𝐵. (⟨𝑎, 𝑏⟩ ∈ 𝑅) ∧ (⟨𝑏, 𝑑⟩ ∈ 𝑆 ; 𝑇).
• Since ⟨𝑏, 𝑑⟩ ∈ 𝑆 ; 𝑇 , we have: ∃𝑐 ∈ 𝐶. (⟨𝑏, 𝑐⟩ ∈ 𝑆) ∧ (⟨𝑐, 𝑑⟩ ∈ 𝑇).
• From ⟨𝑎, 𝑏⟩ ∈ 𝑅 and ⟨𝑏, 𝑐⟩ ∈ 𝑆, we have: ⟨𝑎, 𝑐⟩ ∈ 𝑅 ; 𝑆.
• From ⟨𝑎, 𝑐⟩ ∈ 𝑅 ; 𝑆 and ⟨𝑐, 𝑑⟩ ∈ 𝑇 , we have: ⟨𝑎, 𝑑⟩ ∈ (𝑅 ; 𝑆) ; 𝑇 .

Therefore, (𝑅 ; 𝑆) ; 𝑇 = 𝑅 ; (𝑆 ; 𝑇). □
40 / 82

Functions
“A function is a machine which converts a certain class of inputs

into a certain class of outputs.”

— Norbert Wiener

Leonhard Euler Augustin-Louis
Cauchy

Karl
Weierstrass

Joseph-Louis
Lagrange

George Pólya Norbert
Wiener

Definition of a Function

Definition 40 : A function 𝑓 from a set 𝐴 to a set 𝐵, denoted 𝑓 : 𝐴 → 𝐵, is a special kind of relation
𝑓 ⊆ 𝐴 × 𝐵 where every element of 𝐴 is paired with exactly one element of 𝐵.

This means two conditions must hold:
1. Functional (left-total): For every 𝑎 ∈ 𝐴, there is at least one pair ⟨𝑎, 𝑏⟩ in 𝑓 .

∀𝑎 ∈ 𝐴, ∃𝑏 ∈ 𝐵 : ⟨𝑎, 𝑏⟩ ∈ 𝑓
2. Serial (right-unique): For every 𝑎 ∈ 𝐴, there is at most one pair ⟨𝑎, 𝑏⟩ in 𝑓 .

(⟨𝑎, 𝑏1⟩ ∈ 𝑓 ∧ ⟨𝑎, 𝑏2⟩ ∈ 𝑓) ⟹ 𝑏1 = 𝑏2

Definition 41 : A relation that satisfies the functional (left-total) property is called a partial function.

A relation that satisfies both properties is called a total function, or simply a function.

42 / 82

Domain, Codomain, Range

Definition 42 : For a function 𝑓 : 𝐴 → 𝐵:
• The set 𝐴 is called the domain of 𝑓 , denoted Dom(𝑓).
• The set 𝐵 is called the codomain of 𝑓 , denoted Cod(𝑓).
• The range (or image) of 𝑓 is the set of all values that 𝑓 actually takes:

Range(𝑓) = {𝑏 ∈ 𝐵 | ∃𝑎 ∈ 𝐴, 𝑓(𝑎) = 𝑏} = {𝑓(𝑎) | 𝑎 ∈ 𝐴}

Note : Range(𝑓) ⊆ Cod(𝑓)

Example : Let 𝐴 = {1, 2, 3} and 𝐵 = {𝑥, 𝑦, 𝑧}. Let 𝑓 = {⟨1, 𝑥⟩, ⟨2, 𝑦⟩, ⟨3, 𝑥⟩}.
• 𝑓 is a function from 𝐴 to 𝐵.
• Dom(𝑓) = 𝐴
• Cod(𝑓) = 𝐵
• Range(𝑓) = {𝑥, 𝑦} ⊆ 𝐵

We have 𝑓(1) = 𝑥, 𝑓(2) = 𝑦, 𝑓(3) = 𝑥.

1

2

3

𝑥

𝑦

𝑧

43 / 82

Domain, Codomain, Range [2]
Example : Consider 𝑔 : ℤ → ℤ defined by 𝑔(𝑛) = 𝑛2.
• Dom(𝑔) = ℤ.
• Cod(𝑔) = ℤ.
• Range(𝑔) = {0, 1, 4, 9, …} (the set of non-negative perfect squares).

44 / 82

Injective Functions

Definition 43 : A function 𝑓 : 𝐴 → 𝐵 is injective (or one-to-one³) if distinct elements in the domain
map to distinct elements in the codomain.

∀𝑎1, 𝑎2 ∈ 𝐴, (𝑓(𝑎1) = 𝑓(𝑎2)) ⟹ (𝑎1 = 𝑎2)

Example : 𝑓 : ℕ → ℕ defined by 𝑓(𝑛) = 2𝑛 is injective. If 𝑓(𝑛1) = 𝑓(𝑛2), then 2𝑛1 = 2𝑛2, so 𝑛1 = 𝑛2.

Example : 𝑔 : ℤ → ℤ defined by 𝑔(𝑛) = 𝑛2 is not injective, because 𝑔(−1) = 1 and 𝑔(1) = 1, but −1 ≠ 1.

³Do not confuse it with one-to-one correspondence, which is a bijection, not just injection!
45 / 82

Surjective Functions

Definition 44 : A function 𝑓 : 𝐴 → 𝐵 is surjective (or onto) if every element in the codomain is the
image of at least one element in the domain.

∀𝑏 ∈ 𝐵. ∃𝑎 ∈ 𝐴. 𝑓(𝑎) = 𝑏

For surjective functions, Range(𝑓) = Cod(𝑓).

Example : 𝑓 : ℝ → ℝ defined by 𝑓(𝑥) = 𝑥3 is surjective. For any 𝑦 ∈ ℝ, 𝑥 = 3
√𝑦 is such that 𝑓(𝑥) = 𝑦.

Example : 𝑔 : ℕ → ℕ defined by 𝑔(𝑛) = 2𝑛 is not surjective, because odd numbers in ℕ (the codomain) are
not in the range of 𝑔. For example, there is no 𝑛 ∈ ℕ such that 2𝑛 = 3.

46 / 82

Bijective Functions

Definition 45 : A function 𝑓 : 𝐴 → 𝐵 is bijective if it is both injective and surjective. A bijective
function establishes a one-to-one correspondence between the elements of 𝐴 and 𝐵.

Example : 𝑓 : ℝ → ℝ defined by 𝑓(𝑥) = 2𝑥 + 1 is bijective.
• Injective: If 2𝑥1 + 1 = 2𝑥2 + 1, then 2𝑥1 = 2𝑥2, so 𝑥1 = 𝑥2.
• Surjective: For any 𝑦 ∈ ℝ, let 𝑥 = 𝑦−1

2 . Then 𝑓(𝑥) = 2(𝑦−1
2) + 1 = 𝑦 − 1 + 1 = 𝑦.

Example : The identity function id𝐴 : 𝐴 → 𝐴 defined by id𝐴(𝑥) = 𝑥 for all 𝑥 ∈ 𝐴 is bijective.

47 / 82

Function Composition

Definition 46 : Let 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 be two functions. The composition of 𝑔 and 𝑓 , denoted
𝑔 ∘ 𝑓 (read as “𝑔 composed with 𝑓” or “𝑔 after 𝑓”), is a function from 𝐴 to 𝐶 defined by:

(𝑔 ∘ 𝑓)(𝑎) = 𝑔(𝑓(𝑎))

Example : Let 𝑓 : ℝ → ℝ be 𝑓(𝑥) = 𝑥2 and 𝑔 : ℝ → ℝ be 𝑔(𝑥) = 𝑥 + 1.
• (𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)) = 𝑔(𝑥2) = 𝑥2 + 1.
• (𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)) = 𝑓(𝑥 + 1) = (𝑥 + 1)2 = 𝑥2 + 2𝑥 + 1.

48 / 82

Properties of Function Composition
• Associativity: If 𝑓 : 𝐴 → 𝐵, 𝑔 : 𝐵 → 𝐶 , and ℎ : 𝐶 → 𝐷, then (ℎ ∘ 𝑔) ∘ 𝑓 = ℎ ∘ (𝑔 ∘ 𝑓).

• The identity function acts as a neutral element for composition:
‣ id𝐵 ∘ 𝑓 = 𝑓 for any function 𝑓 : 𝐴 → 𝐵.
‣ 𝑓 ∘ id𝐴 = 𝑓 for any function 𝑓 : 𝐴 → 𝐵.

• Composition preserves the properties of functions:
‣ If 𝑓 and 𝑔 are injective, so is 𝑔 ∘ 𝑓 .
‣ If 𝑓 and 𝑔 are surjective, so is 𝑔 ∘ 𝑓 .
‣ If 𝑓 and 𝑔 are bijective, so is 𝑔 ∘ 𝑓 .

• Note that in general, 𝑔 ∘ 𝑓 ≠ 𝑓 ∘ 𝑔, i.e., function composition is not commutative.

49 / 82

Inverse Functions

Definition 47 : If 𝑓 : 𝐴 → 𝐵 is a bijective function, then its inverse function, denoted 𝑓−1 : 𝐵 → 𝐴, is
defined as:

𝑓−1(𝑏) = 𝑎 iff 𝑓(𝑎) = 𝑏

Note : A function has an inverse if and only if it is bijective.

Example : Let 𝑓 : ℝ → ℝ be 𝑓(𝑥) = 2𝑥 + 1. We found it’s bijective. To find 𝑓−1(𝑦), let 𝑦 = 2𝑥 + 1. Solving
for 𝑥, we get 𝑥 = 𝑦−1

2 . So, 𝑓−1(𝑦) = 𝑦−1
2 .

Theorem 7 : If 𝑓 : 𝐴 → 𝐵 is a bijective function with inverse 𝑓−1 : 𝐵 → 𝐴:
• 𝑓−1 is also bijective.
• (𝑓−1 ∘ 𝑓)(𝑎) = 𝑎 for all 𝑎 ∈ 𝐴 (i.e., 𝑓−1 ∘ 𝑓 = id𝐴).
• (𝑓 ∘ 𝑓−1)(𝑏) = 𝑏 for all 𝑏 ∈ 𝐵 (i.e., 𝑓 ∘ 𝑓−1 = id𝐵).
• If 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 are both bijective, then (𝑔 ∘ 𝑓)−1 = 𝑓−1 ∘ 𝑔−1.

50 / 82

Image and Preimage of Sets

Definition 48 : Let 𝑓 : 𝐴 → 𝐵 be a function and let 𝑆 ⊆ 𝐴. The image of 𝑆 under 𝑓 is the set:

𝑓(𝑆) = {𝑓(𝑠) | 𝑠 ∈ 𝑆}

Note that 𝑓(𝑆) ⊆ 𝐵. The range of 𝑓 is 𝑓(𝐴).

Definition 49 : Let 𝑓 : 𝐴 → 𝐵 be a function and let 𝑇 ⊆ 𝐵. The preimage of 𝑇 under 𝑓 (or inverse
image of 𝑇) is the set of all elements in the domain that map into 𝑇 :

𝑓−1(𝑇) = {𝑎 ∈ 𝐴 | 𝑓(𝑎) ∈ 𝑇}

Note : The notation 𝑓−1(𝑇) is used even if the inverse function 𝑓−1 does not exist (i.e., if 𝑓 is not
bijective). It always refers to the set of domain elements that map into 𝑇 .

51 / 82

Image and Preimage of Sets [2]
Example : Let 𝑓 : ℤ → ℤ be 𝑓(𝑥) = 𝑥2.
• Let 𝑆 = {−2, −1, 0, 1, 2}. Then 𝑓(𝑆) = {𝑓(−2), 𝑓(−1), 𝑓(0), 𝑓(1), 𝑓(2)} = {4, 1, 0, 1, 4} = {0, 1, 4}.
• Let 𝑇1 = {1, 9}. The preimage is 𝑓−1(𝑇1) = {𝑥 ∈ ℤ | 𝑥2 ∈ {1, 9}} = {−3, −1, 1, 3}.
• Let 𝑇2 = {2, 3}. The preimage is 𝑓−1(𝑇2) = {𝑥 ∈ ℤ | 𝑥2 ∈ {2, 3}} = ∅.

52 / 82

Cardinality & Infinity
“God made the integers, all else is the work of man.”

— Leopold Kronecker

Giuseppe
Peano

Leopold
Kronecker

David Hilbert Kurt Gödel John von
Neumann

Size of Sets

Definition 50 : The size of a finite set 𝑋, denoted |𝑋|, is the number of elements it contains.

Examples :
• Let 𝐴 = {🪐,🦕,🎻}, then |𝐴| = 3, since 𝐴 contains exactly 3 elements.
• Let 𝐵 = {🥝,🥝,🥝}, then |𝐵| = 1, since 𝐵 contains only one unique element (the kiwi).
• |𝒫({1, 2,🐈})| = 23 = 8, since the power set consists of all 8 possible subsets of {1, 2,🐈}.
• |∅| = 0, since the empty set contains no elements.
• |ℕ| = ∞, since there are infinitely many natural numbers.
• |ℝ| = ∞, since there are infinitely many real numbers.

54 / 82

Cardinality of Sets

Definition 51 : Two sets 𝐴 and 𝐵 have the same cardinality and called equinumerous, denoted
|𝐴| = |𝐵| or 𝐴 ≈ 𝐵, iff there is a bijection (one-to-one correspondence) from 𝐴 to 𝐵.

Theorem 8 : Equinumerosity is an equivalence relation.

Proof : Let 𝐴, 𝐵, 𝐶 be sets.
• Reflexivity: The identity map id𝐴 : 𝐴 → 𝐴, where id𝐴(𝑥) = 𝑥, is a bijection, so 𝐴 ≈ 𝐴.
• Symmetry: Suppose 𝐴 ≈ 𝐵, then there is a bijection 𝑓 : 𝐴 → 𝐵. Since it is a bijection, its inverse 𝑓−1

exists and is also a bijection. Hence, 𝑓−1 : 𝐵 → 𝐴 is a bijection, so 𝐵 ≈ 𝐴.
• Transitivity: Suppose that 𝐴 ≈ 𝐵 and 𝐵 ≈ 𝐶 , i.e., there are bijections 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 .

Then the composition 𝑔 ∘ 𝑓 : 𝐴 → 𝐶 is also a bijection. So 𝐴 ≈ 𝐶 .

□

55 / 82

Countable Sets

Definition 52 : A set called countable if it is either finite or has the same cardinality as the set of
natural numbers ℕ. Alternatively, a set is countable if there is a bijection from ℕ to that set.

When an infinite set is countable, its cardinality is denoted ℵ0 (“aleph-null”).

Example : |ℕodd = {1, 3, 5, …}| = ℵ0, the set of odd natural numbers is countable, since there is a bijection
𝑓 : ℕ → ℕodd defined by 𝑓(𝑛) = 2𝑛 + 1.

Example : |{𝑥 ∈ ℕ | 𝑥 is prime}| = ℵ0, the set of prime numbers is countable.

Example : |ℤ| = ℵ0, the set of integers (−∞, …, −2, −1, 0, 1, 2, …, ∞) is countable, since there is a bijection
𝑓 : ℕ → ℤ defined by 𝑓(𝑛):

𝑓(𝑛) = (−1)𝑛⌈𝑛
2
⌉ = {

𝑛
2 if 𝑛 is even
−𝑛+1

2 if 𝑛 is odd
[
[
[
[𝑓(0)

⌈0
2⌉
0

𝑓(1)
−⌈1

2⌉
−1

𝑓(2)
⌈2

2⌉
1

𝑓(3)
−⌈3

2⌉
−2

𝑓(4)
⌈4

2⌉
2

𝑓(5)
−⌈5

2⌉
−3

𝑓(6)
⌈6

2⌉
3

…
…
…]

]
]
]

56 / 82

Countability Constructions

Definition 53 : A set 𝑋 is enumerable if there is a surjection 𝑒 : ℕ → 𝑋 (equivalently a bijection with
either ℕ or an initial segment of ℕ if 𝑋 finite).

Theorem 9 (Zig-Zag Enumeration) : ℕ2 is countable.

Proof : List pairs by diagonals of constant sum: ⟨0, 0⟩; ⟨0, 1⟩, ⟨1, 0⟩; ⟨0, 2⟩, ⟨1, 1⟩, ⟨2, 0⟩; … giving a bijection
with ℕ. □

Theorem 10 : ℚ is countable.

Proof : Enumerate positive reduced fractions 𝑝/𝑞 ordered by 𝑝 + 𝑞 and increasing 𝑝; skip non-reduced.
Interleave 0 and negatives. This yields enumeration, hence ℚ ≈ ℕ. □

57 / 82

Pairing Functions

Definition 54 : A function 𝑓 : 𝐴 × 𝐵 → ℕ is an arithmetical pairing function if it is injective.

We say that 𝑓 encodes 𝐴 × 𝐵, and that 𝑓(𝑎, 𝑏) is the code of the pair ⟨𝑎, 𝑏⟩.

Georg Cantor

Example : The Cantor pairing function 𝑔 : ℕ2 → ℕ is defined as:

𝑔(𝑛, 𝑘) = (𝑛 + 𝑘 + 1)(𝑛 + 𝑘)
2

+ 𝑛

58 / 82

https://en.wikipedia.org/wiki/Georg_Cantor

Uncountable Sets

Definition 55 : A set is uncountable if it is not countable.

In order to prove that a set 𝐴 is uncountable, we need to show that no bijection ℕ → 𝐴 can exist.

The general strategy for showing that is to use Cantor’s diagonal argument. Given a list of elements of 𝐴,
say 𝑥1, 𝑥2, … (enumerated by natural numbers), we construct a new element of 𝐴 that differs from each 𝑥𝑖,
thus showing that the list cannot be complete, and hence no bijection can exist.

Theorem 11 : 𝐵𝜔 is uncountable.

Proof : Recall that 𝔹𝜔 is the set of all infinite sequences of elements from 𝔹 = {0, 1}.
For example, 𝔹𝜔 contains sequences like 0000…, 010101…, 1110…, etc.

Suppose for contradiction that 𝔹𝜔 is countable. Then we can enumerate its elements as 𝑥1, 𝑥2, …, where
each 𝑥𝑖 is an infinite sequence of bits, so we can represent it as 𝑥𝑖 = (𝑏𝑖1, 𝑏𝑖2, 𝑏𝑖3, …), where 𝑏𝑖𝑗 ∈ 𝔹 is the
𝑗-th bit of the 𝑖-th sequence.

59 / 82

Uncountable Sets [2]
Now we construct a new sequence Δ = (𝑏11, 𝑏22, 𝑏33, …), where 𝑏𝑖𝑖 = 1 − 𝑏𝑖𝑖, i.e., we flip the 𝑖-th bit of
the 𝑖-th sequence. This sequence differs from each 𝑥𝑖 at least in the 𝑖-th position, so it cannot be equal to
any 𝑥𝑖, so it is not in the enumeration 𝑥1, 𝑥2, ….

1 2 3 …
𝑥1 𝒃𝟏𝟏 𝑏12 𝑏13 …
𝑥2 𝑏21 𝒃𝟐𝟐 𝑏23 …
𝑥3 𝑏31 𝑏32 𝒃𝟑𝟑 …
⋮ ⋮ ⋮ ⋮ ⋱
Δ 𝑏11 𝑏22 𝑏33 …

Since Δ is constructed from the bits, it is also an element of 𝔹𝜔. Thus, we have found an element of 𝔹𝜔 that
is not in the enumeration 𝑥1, 𝑥2, …, contradicting the assumption that 𝔹𝜔 is countable. □

60 / 82

Sets of Different Sizes

Definition 56 : The cardinality of a set 𝐴 is less than or the same as the cardinality of a set 𝐵, denoted
|𝐴| ≤ |𝐵| or 𝐴 ⪯ 𝐵, if there is an injection (one-to-one function) from 𝐴 to 𝐵.

Definition 57 : Set 𝐴 is smaller than 𝐵, denoted |𝐴| < |𝐵| or 𝐴 ≺ 𝐵, iff there is an injection, but
no bijection from 𝐴 to 𝐵, i.e., 𝐴 ⪯ 𝐵 and 𝐴 ≉ 𝐵.

Note : Using this notation, we can say that a set 𝑋 is countable iff 𝑋 ⪯ ℕ, and uncountable iff ℕ ≺ 𝑋.

Example : {1, 2} ≺ {𝑎, 𝑏, 𝑐}, since there is an injection 𝑓 : {1, 2} → {𝑎, 𝑏, 𝑐} defined by 𝑓(1) = 𝑎 and
𝑓(2) = 𝑏, but no bijection exists.

Example : ℕ ⪯ ℤ, since there is bijection (and thus an injection) 𝑓 : ℕ → ℤ.

Example : ℤ ⪯ ℕ, since there is bijection (and thus an injection) 𝑓 : ℤ → ℕ.

Example : ℕ ≺ 𝒫(ℕ), since there is an injection 𝑓(𝑥) = {𝑥}, but no bijection exists.

61 / 82

Cantor’s Theorem

Theorem 12 (Cantor) : 𝐴 ≺ 𝒫(𝐴), for any set 𝐴.

Proof : The map 𝑓(𝑥) = {𝑥} is an injection 𝑓 : 𝐴 → 𝒫(𝐴), since if 𝑥 ≠ 𝑦, then also {𝑥} ≠ {𝑦} by
extensionality, and so 𝑓(𝑥) ≠ 𝑓(𝑦). So we have that 𝐴 ⪯ 𝒫(𝐴).

It remains to show that 𝐴 ≉ 𝐵. For reductio, suppose 𝐴 ≈ 𝐵, i.e., there is some bijection 𝑔 : 𝐴 → 𝐵.
Now consider 𝐷 = {𝑥 ∈ 𝐴 | 𝑥 ∉ 𝑔(𝑥)}. Note that 𝐷 ⊆ 𝐴, so 𝐷 ∈ 𝒫(𝐴). Since 𝑔 is a bijection, there exists
some 𝑦 ∈ 𝐴 such that 𝑔(𝑦) = 𝐷. But now we have

𝑦 ∈ 𝑔(𝑦) iff 𝑦 ∈ 𝐷 iff 𝑦 ∉ 𝑔(𝑦)

This is a contradiction, since 𝑦 cannot be both in and not in 𝑔(𝑦). Thus, 𝐴 ≉ 𝒫(𝐴). □

62 / 82

Schröder–Bernstein Theorem

Theorem 13 (Schröder–Bernstein) : If 𝐴 ⪯ 𝐵 and 𝐵 ⪯ 𝐴, then 𝐴 ≈ 𝐵.

In other words, if there are injections in both directions between two sets, then there is a bijection.

Proof : Obvious, but difficult. 🤷 □

63 / 82

Another Cantor’s Theorem
Let 𝐿 be the unit line, i.e., the set of points [0, 1]. Let 𝑆 be the unit square, i.e., the set of points 𝐿 × 𝐿.

Theorem 14 : 𝐿 ≈ 𝑆. 𝐿 𝑆

Proof⁴ : Consider the function 𝑓 : 𝐿 → 𝑆 defined by 𝑓(𝑥) = (𝑥, 𝑥). This is an injection, since if
𝑓(𝑎) = 𝑓(𝑏), then (𝑎, 𝑎) = (𝑏, 𝑏), so 𝑎 = 𝑏. Thus, 𝐿 ⪯ 𝑆.

Now consider the function 𝑔 : 𝑆 → 𝐿 that maps (𝑥, 𝑦) to the real number obtained by interleaving the
decimal expansions of 𝑥 and 𝑦.

𝑥 = 0.𝑥1𝑥2𝑥3…
𝑦 = 0.𝑦1𝑦2𝑦3…

} 𝑔(𝑥, 𝑦) = 0.𝑥1𝑦1𝑥2𝑦2𝑥3𝑦3…

This is an injection, since if 𝑔(𝑎, 𝑏) = 𝑔(𝑐, 𝑑), then 𝑎𝑛 = 𝑐𝑛 and 𝑏𝑛 = 𝑑𝑛 for all 𝑛 ∈ ℕ, so (𝑎, 𝑏) = (𝑐, 𝑑).
Thus, 𝑆 ⪯ 𝐿.

By Schröder–Bernstein (Theorem 13), we have that 𝐿 ≈ 𝑆. □

⁴See https://math.stackexchange.com/a/183383 for more detailed analysis.
64 / 82

https://math.stackexchange.com/a/183383

Order Theory
“Order is heaven’s first law.”

— Alexander Pope

Helmut Hasse Alfred Tarski Emmy Noether Garrett
Birkhoff

Dana Scott Felix Hausdorff

Partially Ordered Sets

Definition 58 : A partially ordered set (or poset) ⟨𝑆, ≤⟩ is a set 𝑆 equipped with a partial order ≤.

Definition 59 : A chain in a poset ⟨𝑆, ≤⟩ is a subset 𝐶 ⊆ 𝑆 such that any two elements 𝑥, 𝑦 ∈ 𝐶
are comparable, i.e., either 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥.

Definition 60 : An element 𝑥 ∈ 𝑆 is called a minimal element of a poset ⟨𝑆, ≤⟩ if there is no “greater”
element 𝑦 ∈ 𝑆 such that 𝑦 < 𝑥 (i.e., 𝑦 ≤ 𝑥 and 𝑦 ≠ 𝑥).

Definition 61 : A maximal element 𝑚 satisfies: there is no 𝑦 ∈ 𝑆 with 𝑚 < 𝑦.

Note : There may be multiple maximal (or minimal) elements.

66 / 82

Partially Ordered Sets [2]

Definition 62 : The greatest element of a poset ⟨𝑆, ≤⟩ is an element 𝑔 ∈ 𝑆 that is greater than or equal
to every other element in 𝑆, i.e., for all 𝑥 ∈ 𝑆, 𝑥 ≤ 𝑔.

Definition 63 : A least element (bottom) 𝑏 satisfies 𝑏 ≤ 𝑥 for all 𝑥 ∈ 𝑆.

Note : Greatest (top) and least (bottom) elements are unique when they exist.

Examples :
• ⟨𝒫(𝐴), ⊆⟩: least ∅, greatest 𝐴.
• ⟨ℕ+, |⟩: least 1, no greatest element.
• ⟨ℤ, ≤⟩: no least or greatest element.
• ⟨{1, …, 6}, |⟩: least 1, no greatest element, maximal elements are 4, 5, 6.

67 / 82

Upper and Lower Bounds

Definition 64 : In a poset ⟨𝑆, ≤⟩, an element 𝑢 ∈ 𝑆 is called an upper bound of a subset 𝐶 ⊆ 𝑆 if it is
greater than or equal to every element in 𝐶 , i.e., for all 𝑥 ∈ 𝐶 , 𝑥 ≤ 𝑢.

Definition 65 : In a poset ⟨𝑆, ≤⟩, an element 𝑙 ∈ 𝑆 is called a lower bound of a subset 𝐶 ⊆ 𝑆 if it is
less than or equal to every element in 𝐶 , i.e., for all 𝑥 ∈ 𝐶 , 𝑙 ≤ 𝑥.

Examples :
• In ⟨ℝ, ≤⟩ for interval 𝐶 = (0, 1): every 𝑥 ≤ 0 is a lower bound; every 𝑥 ≥ 1 an upper bound.
• In ⟨𝒫(𝐴), ⊆⟩ for 𝐶 = {{1, 2}, {1, 3}}: lower bounds include {1}, ∅; upper bounds include {1, 2, 3}.
• In ⟨ℤ, |⟩ for 𝐶 = {4, 6}: upper bounds are multiples of 12; least upper bound 12; lower bounds are

divisors of 2; greatest lower bound 2.

68 / 82

Suprema and Infima

Definition 66 : In a poset ⟨𝑆, ≤⟩, the supremum (or join) of a subset 𝐶 ⊆ 𝑆, denoted sup(𝐶) or ⋁ 𝐶 , is
the least upper bound of 𝐶 , i.e., an upper bound 𝑢 ∈ 𝑆 s.t. for any other upper bound 𝑣 ∈ 𝑆, 𝑢 ≤ 𝑣.

Note : If it exists, the least upper bound is unique.

Definition 67 : In a poset ⟨𝑆, ≤⟩, the infimum (or meet) of a subset 𝐶 ⊆ 𝑆, denoted inf(𝐶) or ⋀ 𝐶 , is
the greatest lower bound of 𝐶 , i.e., a lower bound 𝑙 ∈ 𝑆 s.t. for any other lower bound 𝑚 ∈ 𝑆, 𝑚 ≤ 𝑙.

Note : If it exists, the greatest lower bound is unique.

Examples :
• ⟨ℝ, ≤⟩: sup({0, 1}) = 1, inf({0, 1}) = 0, i.e., sup(𝐶) = max(𝐶), inf(𝐶) = min(𝐶).
• ⟨𝒫(𝐴), ⊆⟩: sup = ∪, inf = ∩.
• Divisibility on ℕ>0: sup{𝑎, 𝑏} = lcm(𝑎, 𝑏) (if any common multiple), inf{𝑎, 𝑏} = gcd(𝑎, 𝑏).

69 / 82

Lattices

Definition 68 : A poset ⟨𝑆, ≤⟩ where every non-empty finite subset 𝐶 ⊆ 𝑆 has a join (supremum) is
called an upper semilattice (or join-semilattice) and denoted ⟨𝑆, ∨⟩.

Definition 69 : A poset ⟨𝑆, ≤⟩ where every non-empty finite subset 𝐶 ⊆ 𝑆 has a meet (infimum) is
called a lower semilattice (or meet-semilattice) and denoted ⟨𝑆, ∧⟩.

Definition 70 : A poset ⟨𝑆, ≤⟩ that is both an upper semilattice and a lower semilattice, i.e., every
non-empty finite subset has both a join and a meet, is called a lattice, denoted (𝑆, ∨, ∧).

70 / 82

Why Lattices?

Why study lattices? Whenever you have:
• Elements that can be compared (ordered)
• Ways to combine elements (join, meet)
• Consistent behavior under combination

…you likely have a lattice! This structure appears in programming languages, databases, security
systems, logic circuits, and many other areas of computer science and mathematics.

71 / 82

Properties of Lattices

Definition 71 : A lattice is bounded if it has a greatest element ⊤ and a least element ⊥.

Definition 72 : A lattice is distributive if 𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) (and dually).

Definition 73 : A lattice is modular if 𝑥 ≤ 𝑧 implies 𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ 𝑧.

Note : Distributive ⇒ modular.

Example (Powerset Lattice) : ⟨𝒫(𝐴), ⊆⟩ is a bounded distributive lattice with ∨ = ∪, ∧ = ∩, ⊤ = 𝐴, ⊥ = ∅.

Why this matters: This is the foundation of set-based reasoning in:
• Database theory (relational algebra)
• Formal specification languages (Z, B-method)
• Model checking and verification

72 / 82

Examples of Lattices
Example (Divisibility Lattice) : For positive integers, 𝑎 ≤ 𝑏 iff 𝑎 divides 𝑏.
• Join: Least Common Multiple (LCM)
• Meet: Greatest Common Divisor (GCD)
• Used in: Number theory, cryptography (RSA), computer algebra systems

Example (Partition Lattice) : All partitions of a set 𝑆, ordered by refinement.
• 𝜋1 ≤ 𝜋2 if 𝜋1 is a refinement of 𝜋2 (smaller blocks)
• Join: Coarsest common refinement
• Meet: Finest common coarsening
• Applications: Clustering, database normalization

Lattices aren’t just abstract algebra — they appear everywhere in computer science and mathematics.

The join and meet operations capture fundamental patterns of combination and interaction.

73 / 82

Why Lattices Matter [1]: Information Security Levels

Public

Internal

Confidential

Secret

Top SecretExample : In computer security, information has classification levels forming a lattice:

• Elements: {Public, Internal, Confidential, Secret, Top Secret}
• Order: Public ≤ Internal ≤ Confidential ≤ Secret ≤ Top Secret
• Join (∨): Higher classification needed to combine information
• Meet (∧): Lower classification that both pieces can be declassified to

For instance:
• Internal ∨ Confidential = Confidential (combination needs higher level)
• Secret ∧ Confidential = Confidential (both can be declassified to this level)

74 / 82

Why Lattices Matter [2]: Program Analysis and Type Systems
Example : In programming language theory, types form lattices:

Subtype Lattice:
• Order: int ⊑ number ⊑ any, string ⊑ any
• Join: Most general common supertype (for union types)
• Meet: Most specific common subtype (for intersection types)

Control Flow Analysis:
• Elements: Sets of possible program states
• Order: Subset inclusion (⊆)
• Join: Union of possible states (at merge points)
• Meet: Intersection of guaranteed properties

75 / 82

Why Lattices Matter [3]: Database Query Optimization
Example : Query execution plans form a lattice:

• Elements: Different ways to execute a query
• Order: “Plan A ≤ Plan B” if A is more efficient than B
• Join: Combine optimization strategies
• Meet: Find common optimizations

This structure helps database optimizers systematically explore the space of possible query plans.

76 / 82

Why Lattices Matter [4]: Concept Hierarchies and Ontologies
Example : Knowledge representation uses concept lattices.

For example, consider a biological taxonomy:

Animal

Mammal Bird

Dog Eagle

• Elements: Biological concepts (e.g., Animal, Mammal, Dog)
• Order: “Concept A ≤ Concept B” if A is a more specific type of B, e.g., “Dog ≤ Mammal”
• Join: Most specific common ancestor, e.g., “Mammal ∨ Bird = Animal”
• Meet: Most general common descendant, e.g., “Bird ∧ Eagle = Eagle”

77 / 82

Why Lattices Matter [5]: Distributed Systems and Causality
Example : In distributed systems, events form a lattice under causality:

• Elements: System events with vector timestamps
• Order: “Event A ≤ Event B” if A causally precedes B
• Join: Latest information from both events
• Meet: Common causal history

This structure is crucial for:
• Consistent distributed databases
• Version control systems (Git DAG)
• Blockchain consensus algorithms

78 / 82

Why Lattices Matter [6]: Logic and Boolean Reasoning
Example : Propositional formulas form lattices:

• Elements: Boolean formulas over variables
• Order: 𝜑 ≤ 𝜓 if 𝜑 implies 𝜓 (semantic entailment)
• Join: Disjunction (∨) — weaker condition
• Meet: Conjunction (∧) — stronger condition

Special case: Boolean algebra (true, false, ∨, ∧, ¬) used in:
• Digital circuit design
• Database query languages (SQL WHERE clauses)
• Search engines (Boolean search)

79 / 82

TODO
• Applications of lattices in:

‣ Formal concept analysis
‣ Domain theory in computer science
‣ Algebraic topology
‣ Cryptography (lattice-based cryptography)

• Advanced topics in set theory:
‣ Cardinal arithmetic
‣ Ordinal numbers
‣ Forcing and independence results
‣ Large cardinals

• Connections to Boolean algebra (next lecture)
• Applications in formal logic and proof theory

80 / 82

Looking Ahead: Boolean Algebra
The next lecture will explore Boolean algebra, which provides the mathematical foundation for:
• Digital circuit design and computer hardware
• Propositional logic and automated reasoning
• Database query optimization
• Formal verification of software and hardware systems

Key topics will include:
• Boolean functions and their representations
• Normal forms (CNF, DNF)
• Minimization techniques (Karnaugh maps, Quine-McCluskey)
• Functional completeness and Post’s theorem
• The satisfiability problem (SAT) and its computational complexity

81 / 82

Preview: Formal Logic
Following Boolean algebra, we will study formal logic, covering:
• Propositional and predicate logic
• Natural deduction and proof systems
• Completeness and soundness theorems
• Applications to program verification and AI reasoning

This progression from sets → relations → functions → Boolean algebra → logic provides a solid
foundation for advanced topics in discrete mathematics and computer science.

82 / 82

	Set Theory
	Introduction
	Basic Notions
	Set-Builder Notation
	Subsets
	Power Sets
	Hasse Diagram of Power Set
	Some Important Sets
	Operations on Sets
	Venn Diagrams and Euler Circles
	Laws of Set Operations
	Tuples and Ordered Pairs
	Cartesian Product
	Geometric Interpretation of Cartesian Product
	Russell’s Paradox
	From Naïve to Axiomatic Set Theory
	ZFC Axioms

	Relations
	Relations as Sets
	Graph Representation
	Matrix Representation
	Special Relations
	Operations on Relations
	Closures of Relations
	Properties of Homogeneous Relations
	More Properties
	Additional Properties
	Equivalence Relations
	Partitions
	Partitions and Equivalence Relations
	Orders
	Chains and Antichains
	Dilworth's Theorem
	Examples of Orders
	Composition of Relations
	Powers of Relations
	Associativity of Composition

	Functions
	Definition of a Function
	Domain, Codomain, Range
	Injective Functions
	Surjective Functions
	Bijective Functions
	Function Composition
	Properties of Function Composition
	Inverse Functions
	Image and Preimage of Sets

	Cardinality & Infinity
	Size of Sets
	Cardinality of Sets
	Countable Sets
	Countability Constructions
	Pairing Functions
	Uncountable Sets
	Sets of Different Sizes
	Cantor's Theorem
	Schröder–Bernstein Theorem
	Another Cantor's Theorem

	Order Theory
	Partially Ordered Sets
	Upper and Lower Bounds
	Suprema and Infima
	Lattices
	Why Lattices?
	Properties of Lattices
	Examples of Lattices
	Why Lattices Matter [1]: Information Security Levels
	Why Lattices Matter [2]: Program Analysis and Type Systems
	Why Lattices Matter [3]: Database Query Optimization
	Why Lattices Matter [4]: Concept Hierarchies and Ontologies
	Why Lattices Matter [5]: Distributed Systems and Causality
	Why Lattices Matter [6]: Logic and Boolean Reasoning
	TODO
	Looking Ahead: Boolean Algebra
	Preview: Formal Logic

