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5 GraphTheory Cheatsheet Glossary

∗ Graph
2 is an ordered pair𝐺 = ⟨𝑉 , 𝐸⟩, where 𝑉 = {𝑣1, . . . , 𝑣𝑛} is a set of vertices, and 𝐸 = {𝑒1, . . . , 𝑒𝑚} is a set of edges.

◦ Given a graph 𝐺 , the notation 𝑉 (𝐺) denotes the vertices of 𝐺 .
◦ Given a graph 𝐺 , the notation 𝐸 (𝐺) denotes the edges of 𝐺 .
◦ In fact, 𝑉 (·) and 𝐸 (·) functions allow to access “vertices” and “edges” of any object possessing them (e.g., paths).

∗ Order of a graph 𝐺 is the number of vertices in it: |𝑉 (𝐺) |.
∗ Size of a graph 𝐺 is the number of edges in it: |𝐸 (𝐺) |.
∗ Two graphs are equal if their vertex sets and edge sets are equal: 𝐺1 =𝐺2 iff 𝑉1 =𝑉2 and 𝐸1 = 𝐸2.
∗ Two graphs𝐺1 = ⟨𝑉1, 𝐸1⟩ and𝐺2 = ⟨𝑉2, 𝐸2⟩ are called isomorphic

2, denoted𝐺1 ≃𝐺2, if there exists an edge-preserving
bijection 𝑓 : 𝑉1 →𝑉2, i.e. any two vertices 𝑢, 𝑣 ∈𝑉1 are adjacent in 𝐺1 if and only if 𝑓 (𝑢) and 𝑓 (𝑣) are adjacent in 𝐺2.
This means that the graphs are structurally identical up to vertex renaming.

∗ Simple undirected2 graphs have 𝐸 ⊆ 𝑉 (2) , i.e. each edge 𝑒𝑖 ∈ 𝐸 between vertices 𝑢 and 𝑣 is denoted by {𝑢, 𝑣} ∈𝑉 (2) .
Such undirected edges are also called links or lines.
◦ 𝐴 (𝑘 ) = {{𝑥1, . . . , 𝑥𝑘 } | 𝑥1 ≠ · · · ≠ 𝑥𝑘 ∈ 𝐴} = {𝑆 | 𝑆 ⊆ 𝐴, |𝑆 | =𝑘} is the set of 𝑘-sized subsets of 𝐴.

∗ Simple directed2 graphs have 𝐸 ⊆𝑉 2, i.e. each edge 𝑒𝑖 ∈ 𝐸 from vertex 𝑢 to 𝑣 is denoted by an ordered pair ⟨𝑢, 𝑣⟩ ∈𝑉 2.
Such directed edges are also called arcs or arrows.
◦ 𝐴𝑘 =𝐴× · · · ×𝐴 = {(𝑥1, . . . , 𝑥𝑘 ) | 𝑥1, . . . , 𝑥𝑘 ∈ 𝐴} is the set of 𝑘-tuples (Cartesian 𝑘-power of 𝐴).
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∗ Multi-edges
2 are edges that have the same end nodes.

∗ Loop
2 is an edge that connects a vertex to itself.

∗ Simple graph
2 is a graph without multi-edges and loops.

∗ Multigraph
2 is a graph with multi-edges.

∗ Pseudograph
2 is a multigraph with loops.

∗ Null graph
2 is a “graph” without vertices.

∗ Trivial (singleton) graph is a graph consisting of a single vertex.
∗ Empty (edgeless) graph

2 is a graph without edges.
∗ Complete graph

2 𝐾𝑛 is a simple graph in which every pair of distinct vertices is connected by an edge.
∗ Weighted graph

2 𝐺 = (𝑉 , 𝐸,𝑤) is a graph in which each edge has an associated numerical value (the weight)
represented by the weight function𝑤 : 𝐸→ Num.

∗ Subgraph
2 of a graph 𝐺 = ⟨𝑉 , 𝐸⟩ is another graph 𝐺 ′ = ⟨𝑉 ′, 𝐸′⟩ such that 𝑉 ′ ⊆ 𝑉 , 𝐸′ ⊆ 𝐸. Designated as 𝐺 ′ ⊆ 𝐺 .

∗ Spanning (partial) subgraph
2 is a subgraph that includes all vertices of a graph.

∗ Induces subgraph
2 of a graph 𝐺 = ⟨𝑉 , 𝐸⟩ is another graph 𝐺 ′ formed from a subset 𝑆 of the vertices of the graph

and all the edges (from the original graph) connecting pairs of vertices in that subset. Formally, 𝐺 ′ =𝐺 [𝑆] = ⟨𝑉 ′, 𝐸′⟩,
where 𝑆 ⊆ 𝑉 , 𝑉 ′ =𝑉 ∩ 𝑆 , 𝐸′ = {𝑒 ∈ 𝐸 | ∃𝑣 ∈ 𝑆 : 𝑒 𝐼 𝑣}.
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Adjacency matrix:[𝑎 𝑏 𝑐 𝑑
𝑎 0 1 0 0
𝑏 1 0 1 1
𝑐 0 1 1 1
𝑑 0 1 1 0

] [ 𝑎 𝑏 𝑐 𝑑
𝑎 0 1 0 0
𝑏 −1 0 1 1
𝑐 0 −1 1 1
𝑑 0 −1 −1 0

]
Incidence matrix:[𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝑎 0 0 0 0 0
𝑏 1 1 0 1 0
𝑐 0 1 1 0 2
𝑑 0 0 1 1 0

] [ 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5
𝑎 −1 0 0 0 0
𝑏 1 −1 0 −1 0
𝑐 0 1 −1 0 2
𝑑 0 0 1 1 0

]

∗ Adjacency
2 is the relation between two vertices connected with an edge.

∗ Adjacency matrix
2 is a square matrix 𝐴𝑉 ×𝑉 of an adjacency relation.

◦ For simple graphs, adjacency matrix is binary, i.e. 𝐴𝑖 𝑗 ∈ {0, 1}.
◦ For directed graphs, 𝐴𝑖 𝑗 ∈ {0, 1,−1}.
◦ For multigraphs, adjacency matrix contains edge multiplicities, i.e.𝐴𝑖 𝑗 ∈ N0.

∗ Incidence
2 is a relation between an edge and its endpoints.

∗ Incidence matrix
2 is a Boolean matrix 𝐵𝑉 ×𝐸 of an incidence relation.

∗ Degree
2 deg(𝑣) the number of edges incident to 𝑣 (loops are counted twice).

◦ 𝛿 (𝐺) =min
𝑣∈𝑉

deg(𝑣) is theminimum degree.
◦ Δ(𝐺) =max

𝑣∈𝑉
deg(𝑣) is themaximum degree.

◦ Handshaking lemma.
∑︁
𝑣∈𝑉

deg(𝑣) = 2|𝐸 |.

∗ A graph is called 𝑟 -regular2 if all its vertices have the same degree: ∀𝑣 ∈𝑉 : deg(𝑣) = 𝑟 .
∗ Complement graph

2 of a graph𝐺 is a graph 𝐻 on the same vertices such that two distinct vertices of 𝐻 are adjacent
iff they are non-adjacent in 𝐺 .

∗ Intersection graph
2 of a family of sets 𝐹 = {𝑆𝑖 } is a graph 𝐺 =Ω(𝐹 ) = ⟨𝑉 , 𝐸⟩ such that each vertex 𝑣𝑖 ∈𝑉 denotes

the set 𝑆𝑖 , i.e. 𝑉 = 𝐹 , and the two vertices 𝑣𝑖 and 𝑣 𝑗 are adjacent whenever the corresponding sets 𝑆𝑖 and 𝑆 𝑗 have a
non-empty intersection, i.e. 𝐸 = {⟨𝑣𝑖 , 𝑣 𝑗 ⟩ | 𝑖 ≠ 𝑗, 𝑆𝑖 ∩ 𝑆 𝑗 ≠ ∅}.
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∗ Line graph
2 of a graph𝐺 = ⟨𝑉 , 𝐸⟩ is another graph 𝐿(𝐺) =Ω(𝐸) that represents the adjacencies between edges of𝐺 .

Each vertex of 𝐿(𝐺) represents an edge of 𝐺 , and two vertices of 𝐿(𝐺) are adjacent iff the corresponding edges share
a common endpoint in 𝐺 (i.e. edges are “adjacent”/“incident”).

Term V
1
E
2
“Closed” term

Walk + + Closed walk
Trail + − Circuit
Path − − Cycle

− + (impossible)
1Can vertices be repeated?
2Can edges be repeated?

∗ Walk
2 is an alternating sequence of vertices and edges: 𝑙 = 𝑣1𝑒1𝑣2 . . . 𝑒𝑛−1𝑣𝑛 .

◦ Trail is a walk with distinct edges.
◦ Path is a walk with distinct vertices (and therefore distinct edges).
◦ A walk is closed if it starts and ends at the same vertex. Otherwise, it is open.
◦ Circuit is a closed trail.
◦ Cycle is a closed path.

∗ Length of a path (walk, trail) 𝑙 =𝑢⇝ 𝑣 is the number of edges in it: |𝑙 | = |𝐸 (𝑙) |.
∗ Girth

2 is the length of the shortest cycle in the graph.
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∗ Distance
2 dist(𝑢, 𝑣) between two vertices is the length of the shortest path 𝑢⇝ 𝑣 .

◦ 𝜀 (𝑣) =max
𝑢∈𝑉

dist(𝑣,𝑢) is the eccentricity of the vertex 𝑣 .
◦ rad(𝐺) =min

𝑣∈𝑉
𝜀 (𝑣) is the radius of the graph 𝐺 .

◦ diam(𝐺) =max
𝑣∈𝑉

𝜀 (𝑣) is the diameter of the graph 𝐺 .
◦ center(𝐺) = {𝑣 | 𝜀 (𝑣) = rad(𝐺)} is the center of the graph 𝐺 .

∗ Clique
2 𝑄 ⊆ 𝑉 is a set of vertices inducing a complete subgraph.

∗ Stable set
2 𝑆 ⊆ 𝑉 is a set of independent (pairwise non-adjacent) vertices.
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∗ Matching
2 𝑀 ⊆ 𝐸 is a set of independent (pairwise non-adjacent) edges.

not matching matching
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matching
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∗ Perfect matching
2 is a matching that covers all vertices in the graph.

◦ A perfect matching (if it exists) is always a minimum edge cover (but not vice-versa!).
∗ Vertex cover

2 𝑅 ⊆ 𝑉 is a set of vertices “covering” all edges.
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∗ Edge cover
2 𝐹 ⊆ 𝐸 is a set of edges “covering” all vertices.
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∗ Cut vertex (articulation point)2 is a vertex whose removal increases the number of connected components.
∗ Bridge

2 is an edge whose removal increases the number of connected components.
∗ Biconnected graph

2 is a connected “nonseparable” graph, which means that the removal of any vertex does not
make the graph disconnected. Alternatively, this is a graph without cut vertices.

∗ Biconnectivity can be defined as a relation on edges 𝑅 ⊆ 𝐸2:
◦ Two edges are called biconnected if there exist two vertex-disjoint paths between the ends of these edges.
◦ Trivially, this relation is an equivalence relation.
◦ Equivalence classes of this relation are called biconnected components

2, also known as blocks.
∗ Edge biconnectivity can be defined as a relation on vertices 𝑅 ⊆ 𝑉 2:

◦ Two vertices are called edge-biconnected if there exist two edge-disjoint paths between them.
◦ Trivially, this relation is an equivalence relation.
◦ Equivalence classes of this relation are called edge-biconnected components (or 2-edge-connected components).

∗ Vertex connectivity
2 𝜘(𝐺) is the minimum number of vertices that has to be removed in order to make the graph

disconnected or trivial (singleton). Equivalently, it is the largest 𝑘 for which the graph 𝐺 is 𝑘-vertex-connected.
∗ 𝑘-vertex-connected graph

2 is a graph that remains connected after less than 𝑘 vertices are removed, i.e. 𝜘(𝐺) ≥ 𝑘 .
◦ Corollary of Menger’s theorem: graph 𝐺 = ⟨𝑉 , 𝐸⟩ is 𝑘-vertex-connected if, for every pair of vertices 𝑢, 𝑣 ∈𝑉 , it is
possible to find 𝑘 vertex-independent (internally vertex-disjoint) paths between 𝑢 and 𝑣 .

◦ 𝑘-vertex-connected graphs are also called simply 𝑘-connected.
◦ 1-connected graphs are called connected, 2-connected are biconnected, 3-connected are triconnected, etc.
◦ Note the “exceptions”:

• Singleton graph 𝐾1 has 𝜘(𝐾1) = 0, so it is not 1-connected, but still considered connected.
• Graph 𝐾2 has 𝜘(𝐾2) = 1, so it is not 2-connected, but considered biconnected, so it can be a block.

∗ Edge connectivity
2 𝜆(𝐺) is the minimum number of edges that has to be removed in order to make the graph

disconnected or trivial (singleton). Equivalently, it is the largest 𝑘 for which the graph 𝐺 is 𝑘-edge-connected.
∗ 𝑘-edge-connected graph

2 is a graph that remains connected after less than 𝑘 edges are removed, i.e. 𝜆(𝐺) ≥ 𝑘 .
◦ Corollary of Menger’s theorem: graph 𝐺 = ⟨𝑉 , 𝐸⟩ is 𝑘-edge-connected if, for every pair of vertices 𝑢, 𝑣 ∈ 𝑉 , it is
possible to find 𝑘 edge-disjoint paths between 𝑢 and 𝑣 .

◦ 2-edge-connected are called edge-biconnected, 3-edge-connected are edge-triconnected, etc.
◦ Note the “exception”:

• Singleton graph 𝐾1 has 𝜆(𝐾1) = 0, so it is not 2-edge-connected, but considered edge-biconnected, so it can be a
2-edge-connected component.

𝜘(𝐺) = 2, 𝜆(𝐺) = 3,𝛿 (𝐺) = 3, Δ(𝐺) = 6

∗ Whitney’s theorem. For any graph 𝐺 , 𝜘(𝐺) ≤ 𝜆(𝐺) ≤ 𝛿 (𝐺).
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∗ Tree
2 is a connected undirected acyclic graph.

∗ Forest
2 is an undirected acyclic graph, i.e. a disjoint union of trees.

∗ An unrooted tree (free tree) is a tree without any designated root.
∗ A rooted tree is a tree in which one vertex has been designated the root.

◦ In a rooted tree, the parent of a vertex 𝑣 is the vertex connected to 𝑣 on the path to the root.
◦ A child of a vertex 𝑣 is a vertex of which 𝑣 is the parent.
◦ A sibling to a vertex 𝑣 is any other vertex on the tree which has the same parent as 𝑣 .
◦ A leaf is a vertex with no children. Equivalently, leaf is a pendant vertex, i.e. deg(𝑣) = 1.
◦ An internal vertex is a vertex that is not a leaf.
◦ A 𝑘-ary tree is a rooted tree in which each vertex has at most 𝑘 children. 2-ary trees are called binary trees.

∗ A labeled tree
2 is a tree in which each vertex is given a unique label, e.g., 1, 2, . . . , 𝑛.

∗ Cayley’s formula2. Number of labeled trees on 𝑛 vertices is 𝑛𝑛−2.
∗ Prüfer code

2 is a unique sequence of labels {1, . . . , 𝑛} of length (𝑛 − 2) associated with the labeled tree on 𝑛 vertices.
◦ Encoding (iterative algorithm for converting tree 𝑇 labeled with {1, . . . , 𝑛} into a Prüfer sequence 𝐾 ):

• On each iteration, remove the leaf with the smallest label, and extend 𝐾 with a single neighbour of this leaf.
• After (𝑛− 2) iterations, the tree will be left with two adjacent vertices— there is no need to encode them, because
there is only one unique tree on 2 vertices, which requires 0 bits of information to encode.

2
3

7
6

51
4

𝐾 =∅

2
3

7
6

51
4

𝐾 = 5

2
3

7
6

51
4

𝐾 = 55

2
3

7
6

51
4

𝐾 = 552

2
3

7
6

51
4

𝐾 = 5523

2
3

7
6

51
4

𝐾 = 55232

2
3

7
6

51
4

𝐾 = 55232
◦ Decoding (iterative algorithm for converting a Prüfer sequence 𝐾 into a tree 𝑇 ):

• Given a Prüfer code 𝐾 of length (𝑛 − 2), construct a set of “leaves”𝑊 = {1, . . . , 𝑛} \𝐾 .
• On each iteration:
(1) Pop the first element of 𝐾 (denote it as 𝑘) and the minimum label in𝑊 (denote it as𝑤 ).
(2) Connect 𝑘 and𝑤 with an edge ⟨𝑘,𝑤⟩ in the tree 𝑇 .
(3) If 𝑘 ∉ 𝐾 , then extend the set of “leaves”𝑊 :=𝑊 ∪ {𝑘}.

• After (𝑛 − 2) iterations, the sequence 𝐾 will be empty, and the set𝑊 will contain exactly two vertices— connect
them with an edge.
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