
Cheatsheet: Automata Theory Discrete M∀th, à Spring 2025

6 Automata Theory Cheatsheet
∗ Alphabet2

is a finite set of symbols, commonly denoted Σ.

∗ Word𝑤 ∈ Σ∗
is a finite sequence of symbols from alphabet Σ For example,𝑤 =𝑎𝑏𝑎𝑐𝑎𝑏𝑎 ∈ {𝑎, 𝑏, 𝑐}∗.

∗ Length of a word: |𝑤 | =𝑛, where 𝑛 is the number of symbols in word𝑤 . For example, |𝑎𝑏𝑎𝑐𝑎𝑏𝑎 | = 7.

∗ Empty word 𝜀 is a word of length 0.

∗ Concatenation of words𝑤1 and𝑤2 is𝑤1 ·𝑤2 =𝑤1𝑤2.

∗ Power of a word𝑤 is𝑤𝑛 =𝑤 ·𝑤 · . . . ·𝑤 (𝑛 times).

∗ Reverse of a word𝑤 is𝑤𝑅
.

∗ Language2 𝐿 over an alphabet Σ is a set of words 𝐿 ⊆ Σ∗
.

∗ Empty language ∅ is a language that contains no words.

∗ Singleton2 language {𝑤} is a language that contains only one word𝑤 .

∗ Empty string language {𝜀} is a language that contains only one empty word 𝜀.

∗ Operations on languages:

◦ Union: 𝐿1 ∪𝐿2 = {𝑤 |𝑤 ∈ 𝐿1 ∨𝑤 ∈ 𝐿2}
◦ Intersection: 𝐿1 ∩𝐿2 = {𝑤 |𝑤 ∈ 𝐿1 ∧𝑤 ∈ 𝐿2}
◦ Complement: ¬𝐿 = {𝑤 |𝑤 ∉ 𝐿}
◦ Concatenation2

: 𝐿1 · 𝐿2 = {𝑎𝑏 | 𝑎 ∈ 𝐿1, 𝑏 ∈ 𝐿2}
◦ Kleene star (Kleene closure)2: 𝐿∗ =

∞⋃
𝑘=0

Σ𝑘

∗ Equivalence: 𝐿1 ≡ 𝐿2 ↔ (𝐿1 ∩𝐿2) ∪ (𝐿1 ∩𝐿2) =∅
∗ Regular language2

is a language that can be defined by a regular expression.

Regular languages are defined inductively (recursively):

◦ The empty language ∅ is regular.

◦ For any 𝑎 ∈ Σ, the singleton language {𝑎} is regular.
◦ If 𝐴 is a regular language, then 𝐴∗

(Kleene star) is also regular.

◦ If 𝐴 and 𝐵 are regular languages, then 𝐴∪𝐵 (union) is also regular.

◦ If 𝐴 and 𝐵 are regular languages, then 𝐴 ·𝐵 (concatenation) is also regular.

◦ No other languages over Σ are regular.

∗ REG (set of regular languages) is set over an alphabet Σ

REG =
∞⋃
𝑘=0

Reg𝑘 = Reg∞.

◦ Reg
0
= {∅, {𝜀}} ∪ {{𝑐} | 𝑐 ∈ Σ}.

◦ Reg𝑖+1 = Reg𝑖 ∪ {𝐴 ·𝐵,𝐴∪𝐵 |𝐴, 𝐵 ∈ Reg𝑖 } ∪ {𝐴∗ |𝐴 ∈ Reg𝑖 }.
∗ REG is closed under union, concatenation, and Kleene star operations.

∗ Regular expressions (regex)2 is a sequence of special characters that define a regular language or an operation over

regular languages. The table below illustrates the correspondence between regular languages and regular expressions.

Here, 𝑐 ∈ Σ denotes the symbol of a given alphabet, 𝐴 ⊆ Σ∗
and 𝐵 ⊆ Σ∗

are some regular languages, 𝛼 and 𝛽 are regular

expressions. In regular expressions, concatenation is denoted by · (can be omitted in regex), union by |, Kleene star
by ∗, and the grouping is made by parentheses.

Language Regex

∅ ∅
{𝜀} 𝜀
{𝑐} 𝑐

𝐴∪𝐵 𝛼 |𝛽
𝐴 ·𝐵 𝛼𝛽
𝐴∗ 𝛼∗

𝐴 ·𝐴∗ 𝛼+

𝐴∪ {𝜀} 𝛼?

∗ Deterministic Finite Automaton (DFA)2 is a 5-tuple A = (Σ, 𝑄, 𝑞0, 𝐹 , 𝛿), where:
◦ Σ is an alphabet;

◦ 𝑄 = {𝑞1, . . . , 𝑞𝑛} is a finite set of states;
◦ 𝑞0 ∈ 𝑄 is an initial state;

◦ 𝐹 ⊆ 𝑄 is a set of final (terminal, accepting) states;

◦ 𝛿 : 𝑄 × Σ→𝑄 is a transition function.

Build time: 2025-09-07 22:14:39Z Source code can be found at https://github.com/Lipen/discrete-math-course

https://en.wikipedia.org/wiki/Alphabet_(formal_languages)
https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Singleton_(mathematics)
https://en.wikipedia.org/wiki/Concatenation
https://en.wikipedia.org/wiki/Kleene_star
https://en.wikipedia.org/wiki/Regular_language
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Deterministic_finite_automaton
https://github.com/Lipen/discrete-math-course

Cheatsheet: Automata Theory Discrete M∀th, à Spring 2025

∗ Language accepted by an automaton A is the set 𝐿(A) = {𝑤 | 𝛿 (𝑞0,𝑤) ∈ 𝐹 }.
∗ Nondeterministic Finite Automaton (NFA)2 is 5-tuple A = (Σ, 𝑄, 𝑞0, 𝐹 , 𝛿), where:

◦ Σ is an alphabet;

◦ 𝑄 = {𝑞1, . . . , 𝑞𝑛} is a finite set of states;
◦ 𝑞0 ∈ 𝑄 is an initial state;

◦ 𝐹 ⊆ 𝑄 is a set of final (terminal, accepting) states;

◦ 𝛿 :𝑄 × Σ→ 2
𝑄
is a transition function.

∗ NFA to DFA conversion algorithm:

1. Set initial state of NFA to initial state of DFA.

2. Take the states in the DFA, and compute in the NFA what the union 𝛿 of those states for each letter in the

alphabet and add them as new states in the DFA.

3. Set every DFA state as accepting if it contains an accepting state from the NFA

∗ Epsilon-NFA (𝜀-NFA) is a NFA that allows 𝜀-moves, that is, the automaton can change state without consuming

input.

◦ 𝛿 : 𝑄 × (Σ∪ {𝜀}) → 2
𝑄
.

∗ 𝜀-NFA to NFA:
1. Find transitive-closure of 𝜀.

2. Back-propagate accepting states over 𝜀-transitions.

3. Perform symbol-transition back-closure over 𝜀-transitions.

4. Remove 𝜀-transitions.

∗ Pumping lemma2
states that if 𝐿 is a regular language, then there exists an integer 𝑛 > 1 depending only on 𝐿, such

that ∀𝑤 ∈ 𝐿, |𝑤 | > 𝑛 can be written as𝑤 = 𝑥𝑦𝑧, such that:

1. |𝑦 | > 0, i.e. 𝑦 ≠ 𝜀

2. |𝑥𝑦 | ≤ 𝑛

3. ∀𝑘 ≥ 0, word 𝑥𝑦𝑘𝑧 is also in language 𝐿

∗ Mealy1 machine2
is a finite-state machine whose output is determined both by the current state and the current

input.

𝑞0

𝑝0

𝑝1

0
/n

1
/n

0/y

1/n

1/y

0/n

This Mealy machine’s output

is “y” whenever the last

two symbols in the input

are the same, and “n” otherwise.

Formally,MMealy = {Σ,Ω, 𝑄, 𝑞0, 𝛿, 𝜆Mealy}, where:
◦ Σ is an input alphabet;

◦ Ω is an output alphabet;

◦ 𝑄 = {𝑞1, . . . , 𝑞𝑛} is finite set of states;
◦ 𝑞0 ∈ 𝑄 is an initial state;

◦ 𝛿 : 𝑄 × Σ→𝑄 is a transition function;

◦ 𝜆Mealy : 𝑄 × Σ→ Ω is an output function.

∗ Moore2 machine2
is a finite-state machine whose output is determined only by the current state.

0 1 2

0

1

1 0

0

1

This Moore machine’s output

is modulo 3 of a binary number.

Formally,MMoore = (Σ,Ω, 𝑄, 𝑞0, 𝛿, 𝜆Moore), where:
◦ Σ is an input alphabet;

◦ Ω is an output alphabet;

◦ 𝑄 = {𝑞1, . . . , 𝑞𝑛} is a finite set of states;
◦ 𝑞0 ∈ 𝑄 is an initial state;

◦ 𝛿 : 𝑄 × Σ→𝑄 is a transition function;

◦ 𝜆Moore : 𝑄 → Ω is an output function.

∗ Emptiness. Language 𝐿(𝑀) is not empty (𝐿 ≠ ∅) if𝑀 accepts a word𝑤 such that |𝑤 | ≤ 𝑛.

∗ Infiniteness. Language 𝐿(𝑀) is infinite (|𝐿 | =∞) if𝑀 accepts a word𝑤 such that 𝑛 ≤ |𝑤 | < 2𝑛.

∗ Myhill-Nerode theorem2
states that the following three statement are equivalent:

1. 𝐿 ⊆ Σ∗
is accepted by some finite automaton (𝐿 is regular).

2. 𝐿 is the union of some equivalence classes of right invariant equivalence relation of finite index.

3. Let 𝑅𝐿 be a relation over words: 𝑥 𝑅𝐿 𝑦 iff ∀𝑧 ∈ Σ : 𝑥𝑧 ∈ 𝐿 ≡ 𝑦𝑧 ∈ 𝐿. Then the quotient Σ∗/𝑅𝐿
is finite.

1
Mealy, George H. (1955). A Method for Synthesizing Sequential Circuits. The Bell System Technical Journal, 34(5), 1045–79.

2
Moore, Edward F. (1956). Gedanken-Experiments on Sequential Machines. Automata Studies, Annals of Mathematical Studies (34), 129–153.

Build time: 2025-09-07 22:14:39Z Source code can be found at https://github.com/Lipen/discrete-math-course

https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton
https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages
https://en.wikipedia.org/wiki/Mealy_machine
https://en.wikipedia.org/wiki/Moore_machine
https://en.wikipedia.org/wiki/Myhill–Nerode_theorem
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1515/9781400882618-006
https://github.com/Lipen/discrete-math-course

Cheatsheet: Automata Theory Discrete M∀th, à Spring 2025

∗ Formal grammar2
is 4-tuple G = (𝑉 ,𝑇 , 𝑆,P), where:

◦ V is a vocabulary, a set of variables or non-terminal symbols.

◦ 𝑇 is a set of terminal symbols disjoint fromV .

◦ 𝑆 is a start symbol, also called sentence symbol.

◦ P is a set of production rules, each rule of the form: V∗𝑆V∗ −→V∗
.

∗ Binary relation⇒ over an grammar G is defined by:

𝑥 ⇒ 𝑦 ⇐⇒∃𝑢, 𝑣, 𝑝, 𝑞 ∈ V : (𝑥 =𝑢𝑝𝑣) ∧ (𝑝 → 𝑞 ∈ P) ∧ (𝑦 =𝑢𝑞𝑣).
Pronounce as “𝑦 is directly derivable from 𝑥”.

∗ Binary relation⇒∗
over a grammar G is defined as reflexive transitive closure of⇒.

Pronounced as “𝑦 is derivable from 𝑥”.

∗ Backus-Naur Form (BNF)2 is notation to describe the syntax of formal language. A BNF specification is a set of

derivation rules, written as follows:

⟨symbol⟩ ::= ⟨expression⟩
where:

◦ ⟨symbol⟩ is a non-terminal symbol that is enclosed in angle brackets.

◦ ⟨expression⟩ consists of one or more sequences of either terminal or non-terminal symbols where each sequence is

separated by a vertical bar indicating a choice.

◦ ::= is a symbol that separates the production rule for a non-terminal symbol.

Build time: 2025-09-07 22:14:39Z Source code can be found at https://github.com/Lipen/discrete-math-course

https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Backus–Naur_form
https://github.com/Lipen/discrete-math-course

	Automata Theory Cheatsheet

