
Homework #5
GraphTheory

Discrete M∀th
à Spring 2025

1. For each of the following graphs, find 𝜘(𝐺), 𝜆(𝐺), 𝛿 (𝐺), 𝜀 (𝑣) of each vertex 𝑣 ∈ 𝑉 (𝐺), rad(𝐺),
diam(𝐺), center(𝐺). Find Euler path, Euler circuit, and Hamiltonian cycle, if they exist. In addition,

find maximum clique 𝑄 ⊆ 𝑉 , maximum stable set 𝑆 ⊆ 𝑉 , maximum matching𝑀 ⊆ 𝐸, minimum

dominating set 𝐷 ⊆ 𝑉 , minimum vertex cover 𝑅 ⊆ 𝑉 , minimum edge cover 𝐹 ⊆ 𝐸 of 𝐺 .

(a)

b

a c

e d

(b)

𝑎 𝑏

𝑑𝑐

ℎ𝑔

𝑘

𝑒 𝑓

𝑖 𝑗

𝑚

(c)

𝑎 𝑐 𝑔 𝑒

𝑏

ℎ

𝑑

𝑓

(d)

𝑎

𝑑 𝑓

𝑏 𝑐

𝑒

2. A precedence graph is a directed graph where the vertices represent the program instructions and

the edges represent the dependencies between instructions: there is an edge from one statement

to a second statement if the second statement cannot be executed before the first statement.

For example, the instruction 𝑏 := 𝑎 + 1 depends on the instruction 𝑎 := 0, so there would be an

edge from the statement 𝑆1 = (𝑎 := 0) to the statement 𝑆2 = (𝑏 :=𝑎 + 1).
Construct a precedence graph for the following program:

𝑆1 : 𝑥 := 0

𝑆2 : 𝑥 := 𝑥 + 1

𝑆3 : 𝑦 := 2

𝑆4 : 𝑧 :=𝑦

𝑆5 : 𝑥 := 𝑥 + 2

𝑆6 : 𝑦 := 𝑥 + 𝑧
𝑆7 : 𝑧 := 4

3. Find a shortest path between 𝑎 and 𝑧 in the given graph.

𝑎
𝑐

𝑏 𝑒

𝑓

𝑑 𝑔

ℎ

𝑖

𝑗

𝑘

𝑙

𝑚

𝑛

𝑜

𝑝

𝑞

𝑟

𝑠

𝑡

𝑧
2

4

1

1

3
2

2

4

5

3

3

2

4

3

2

3

3

6 4

1

8

6

4

22

6

3

4

2

5

3

2

2

1

2

6

1

2

1

8

3

5

8

2

4. Imagine that you have a three-liter jar and another five-liter jar. You can fill any jar with water,

empty any jar, or transfer water from one jar to the other. Use a directed graph to demonstrate

how you can end up with a jar containing exactly one litre of water.

5. Draw 𝐾5 and 𝐾3,3 on the surface of a torus (a donut-shaped solid) without intersecting edges.

Homework #5
GraphTheory

Discrete M∀th
à Spring 2025

6. Floyd’s algorithm (pseudocode given below) can be used to find the shortest path between any

two vertices in a weighted connected simple graph.

(a) Implement Floyd’s algorithm in your favorite programming language and use it to find the

distance between all pairs of vertices in the weighted graph given in task 3.

(b) Prove that Floyd’s algorithm determines the shortest distance between all pairs of vertices in

a weighted simple graph.

(c) Explain in detail (with examples and illustrations) the behavior of the Floyd’s algorithm on a

graph with negative cycles (a negative cycle is a cycle whose edge weights sum to a negative

value).

(d) Give a big-O estimate of the number of operations (comparisons and additions) used by Floyd’s

algorithm to determine the shortest distance between every pair of vertices in a weighted

simple graph with 𝑛 vertices.

(e) Modify the algorithm to output the actual shortest path between any two given vertices, not

just the distance between them.

Algorithm 1: Floyd’s algorithm
Data: weighted simple graph 𝐺 = ⟨𝑉 , 𝐸,𝑤⟩ with vertices 𝑉 = {𝑣1, . . . , 𝑣𝑛} and

weights𝑤 (𝑣𝑖, 𝑣 𝑗), where𝑤 (𝑣𝑖, 𝑣 𝑗) =∞ if ⟨𝑣𝑖, 𝑣 𝑗 ⟩ ∉ 𝐸.
Result: 𝑑 (𝑣𝑖, 𝑣 𝑗) is the length of a shortest path between 𝑣𝑖 and 𝑣 𝑗 .

1 for 𝑖 := 1 to 𝑛 do
2 for 𝑗 := 1 to 𝑛 do
3 𝑑 (𝑣𝑖, 𝑣 𝑗) :=𝑤 (𝑣𝑖, 𝑣 𝑗)

4 for 𝑖 := 1 to 𝑛 do
5 for 𝑗 := 1 to 𝑛 do
6 for 𝑘 := 1 to 𝑛 do
7 if 𝑑 (𝑣 𝑗 , 𝑣𝑖) +𝑑 (𝑣𝑖, 𝑣𝑘) < 𝑑 (𝑣 𝑗 , 𝑣𝑘) then
8 𝑑 (𝑣 𝑗 , 𝑣𝑘) :=𝑑 (𝑣 𝑗 , 𝑣𝑖) +𝑑 (𝑣𝑖, 𝑣𝑘)

7. A tree with 𝑛 vertices is called graceful if its vertices can be labeled with the integers 1, 2, . . . , 𝑛

in such a way that the absolute values of the difference of the labels of adjacent vertices are all

different. Show that the following graphs are graceful.

(a)

(b)

(c)

(d)

8. A caterpillar is a tree that contains a simple path such that every vertex not contained in this

path is adjacent to a vertex in the path.

(a) Which of the graphs in task 7 are caterpillars?

(b) How many non-isomorphic caterpillars are there with six vertices?

(c) Prove or disprove that all caterpillars are graceful.

9. Draw all pairwise non-isomorphic unlabeled unrooted trees on 7 vertices.

Homework #5
GraphTheory

Discrete M∀th
à Spring 2025

10. Consider the following algorithm (let’s call it “Algorithm S”) for finding a minimum spanning

tree from a connected weighted simple graph 𝐺 = ⟨𝑉 , 𝐸⟩ by successively adding groups of edges.

Suppose that the vertices in 𝑉 are ordered. Consider the lexicographic order on edges ⟨𝑢, 𝑣⟩ ∈ 𝐸
with 𝑢 ≺ 𝑣 . An edge ⟨𝑢1, 𝑣1⟩ precedes ⟨𝑢2, 𝑣2⟩ if 𝑢1 precedes 𝑢2 or if 𝑢1 =𝑢1 and 𝑣1 precedes 𝑣2.
The algorithm S begins by simultaneously choosing the edge of least weight incident to each

vertex. The first edge in the ordering is taken in the case of ties. This produces (you are going to

prove it) a graph with no simple circuits, that is, a forest of trees. Next, simultaneously choose for

each tree in the forest the shortest edge between a vertex in this tree and a vertex in a different

tree. Again, the first edge in the ordering is chosen in the case of ties. This produces an acyclic

graph containing fewer trees than before this step. Continue the process of simultaneously adding

edges connecting trees until 𝑛 − 1 edges have been chosen. At this stage a minimum spanning

tree has been constructed.

(a) Show that the addition of edge at each stage of algorithm S produces a forest.

(b) Express algorithm S in pseudocode.

(c) Use algorithm S to produce a minimum spanning tree for the weighted graph given in task 3.

11. The density of an undirected graph 𝐺 is the number of edges of 𝐺 divided by the number of

possible edges in an undirected graph with |𝐺 | vertices. That is, the density of 𝐺 = ⟨𝑉 , 𝐸⟩ is
2|𝐸 |

|𝑉 | (|𝑉 |−1) . A family of graphs𝐺𝑛 , 𝑛 = 1, 2, . . . is sparse if the limit of the density of 𝐺𝑛 is zero as 𝑛

grows without bound, while it is dense if this proportion approaches a positive real number.

For each of these families of graphs, determine whether it is sparse, dense, or neither.

(a) 𝐾𝑛 (complete graph
2
)

(b) 𝐶𝑛 (cycle graph
2
)

(c) 𝐾𝑛,𝑛 (complete bipartite
2
)

(d) 𝐾3,𝑛 (complete bipartite
2
)

(e) 𝑄𝑛 (hypercube graph
2
)

(f) 𝑊𝑛 (wheel graph
2
)

12. Consider a graph of subway lines in Saint Petersburg in 2050
2
. Represent each transfer station as

a single vertex. Smoothen out
2
all 2-degree vertices and remove all pendant (1-degree) vertices

(repeat until fixed point). In the resulting graph
1
, find vertex and edge connectivity, maximum

stable set, maximum matching, minimum dominating set, minimum vertex and edge covers.

13. Find an error in the following inductive “proof” of the statement that every tree with 𝑛 vertices

has a path of length 𝑛 − 1.

⊲ Base: A tree with one vertex clearly has a path of length 0. Inductive step: Assume that a tree

with 𝑛 vertices has a path of length 𝑛 − 1, which has 𝑢 as its terminal vertex. Add a vertex 𝑣 and

the edge from 𝑢 to 𝑣 . The resulting tree has 𝑛 + 1 vertices and has a path of length 𝑛. □

14. Prove rigorously the following theorems:

Theorem 1 (Triangle Ineqality). For any connected graph 𝐺 = ⟨𝑉 , 𝐸⟩:
∀𝑥,𝑦, 𝑧 ∈𝑉 : dist(𝑥,𝑦) + dist(𝑦, 𝑧) ≥ dist(𝑥, 𝑧)

Theorem 2. Any connected graph 𝐺 has rad(𝐺) ≤ diam(𝐺) ≤ 2 rad(𝐺).
Theorem 3 (Tree). A connected graph 𝐺 = ⟨𝑉 , 𝐸⟩ is a tree (i.e. acyclic graph) iff |𝐸 | = |𝑉 | − 1.

Theorem 4 (Whitney). For any graph 𝐺 : 𝜘(𝐺) ≤ 𝜆(𝐺) ≤ 𝛿 (𝐺).
Theorem 5 (Chartrand). For a connected graph𝐺 = ⟨𝑉 , 𝐸⟩: if 𝛿 (𝐺) ≥ ⌊|𝑉 |/2⌋, then 𝜆(𝐺) =𝛿 (𝐺).
Theorem 6 (Harary). Every block of a block graph

2
is a clique.

1
Hint: the resulting subway graph consists of 29 vertices (transfer stations).

2
A block graph 𝐻 = B(𝐺) is an intersection graph of all blocks (biconnected components) of 𝐺 , i.e. each vertex

𝑣 ∈𝑉 (𝐻) corresponds to a block of 𝐺 , and there is an edge {𝑣,𝑢} ∈ 𝐸 (𝐻) iff “blocks” 𝑣 and 𝑢 share a cut vertex.

https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Cycle_graph
https://en.wikipedia.org/wiki/Complete_bipartite_graph
https://en.wikipedia.org/wiki/Complete_bipartite_graph
https://en.wikipedia.org/wiki/Hypercube_graph
https://en.wikipedia.org/wiki/Wheel_graph
https://web.archive.org/web/20240301072159/https://commons.wikimedia.org/wiki/File:Saint_Petersburg_metro_future_map_RUS.png
https://en.wikipedia.org/wiki/Homeomorphism_(graph_theory)#Subdivision_and_smoothing

