
Formal Methods in Software Engineering
Theory of Computation — Spring 2025
Konstantin Chukharev

§1 Languages

Formal Languages

Definition 1 (Formal language) : A set of strings over an alphabet Σ, closed under concatenation.

Noam Chomsky

Formal languages are classified by Chomsky hierarchy:
• Type 0: Recursively Enumerable
• Type 1: Context-Sensitive
• Type 2: Context-Free
• Type 3: Regular

Examples:
• 𝐿 = {𝑎𝑛 | 𝑛 ≥ 0}
• 𝐿 = {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 0}
• 𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ≥ 0}
• 𝐿 = {⟨𝑀, 𝑤⟩ | 𝑀 is a TM that halts on input 𝑤}

Regular

Context-Free

Context-Sensitive

Recursively Enumerable

3 / 51

https://en.wikipedia.org/wiki/Noam_Chomsky

Decision Problems as Languages

Definition 2 (Decision problem): A decision problem is a question with a “yes” or “no” answer.

Formally, the set of inputs for which the problem has an answer “yes” corresponds to a subset 𝐿 ⊆ Σ∗,
where Σ is an alphabet.

Example : SAT Problem as a language:

SAT = {𝜑 | 𝜑 is a satisfiable Boolean formula}

Example : Validity Problem as a language:

VALID = {𝜑 | 𝜑 is a valid logical formula (tautology)}

Example : Halting Problem as a language:

HALT = {⟨𝑀, 𝑤⟩ | Turing machine 𝑀 halts on input 𝑤}

4 / 51

Language Classes

Finite

Regular

Context-Free

Context-Sensitive

Decidable = RE ∩ co-RE

Recursively Enumerable (RE)

co-RE

SAT

HALT

REGULAR

5 / 51

§2 Machines

Finite Automata

Definition 3 : Deterministic Finite Automaton (DFA) is a 5-tuple (𝑄, Σ, 𝛿, 𝑞0, 𝐹) where:
• 𝑄 is a finite set of states,
• Σ is an alphabet (finite set of input symbols),
• 𝛿 : 𝑄 × Σ ⟶ 𝑄 is a transition function,
• 𝑞0 ∈ 𝑄 is the start state,
• 𝐹 ⊆ 𝑄 is a set of accepting states.

DFA recognizes regular languages (Type 3).

Example : Automaton 𝒜 recognizing strings with an even number of 0s, ℒ(𝒜) = {0𝑛 | 𝑛 is even}.

0 1

q0 q1 q1

q1 q0 q1
Start q₀ q₁

0,1

0

1

7 / 51

Turing Machines
Informally, a Turing machine is a finite-state machine with an infinite tape and a head that can read and
write symbols. Initially, the tape contains the input string, the rest are blanks, and the machine is in the
start state. At each step, the machine reads the symbol under the head, changes the state, writes a new
symbol, and moves the head left or right. When the machine reaches the accept or reject state, it
immediately halts.

Note : If the machine never reaches the accept or reject state, it loops forever.

Input Turing
machine

Accept

Loop

Reject

Does not reject

Does not accept

8 / 51

TM Formal Definition

Definition 4 : Turing Machine (TM) is a 7-tuple (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞acc, 𝑞rej) where:
• Γ is a tape alphabet (including blank symbol □ ∈ Γ),
• Σ ⊆ Γ is a input alphabet,
• 𝛿 : 𝑄 × Γ ⟶ 𝑄 × Γ × {𝐿, 𝑅} is a transition function,
• 𝑞acc and 𝑞rej are the accept and reject states.

TM recognizes recursively enumerable languages (Type 0).

9 / 51

TM Language

Definition 5 : The language recognized by a TM 𝑀 , denoted ℒ(𝑀), is the set of strings 𝑤 ∈ Σ∗ that
𝑀 accepts, that is, for which 𝑀 halts in the accept state.

• For any 𝑤 ∈ ℒ(𝑀), 𝑀 accepts 𝑤.
• For any 𝑤 ∉ ℒ(𝑀), 𝑀 does not accept 𝑤, that is, 𝑀 either rejects 𝑤 or loops forever on 𝑤.

Definition 6 : A TM is a decider if it halts on all inputs.

10 / 51

TM Configuration

Definition 7 : A configuration of a TM is a string (𝑢; 𝑞; 𝑣) where 𝑢, 𝑣 ∈ Γ∗, 𝑞 ∈ 𝑄, meaning:
• Tape contents: 𝑢𝑣 followed by the blanks.
• Current state is 𝑞.
• Head position: at the first symbol of 𝑣.

For example, configuration (𝑢; 𝑞; 𝑎𝑣), where 𝑎 ∈ Γ, is represented as follows:

▹ 𝑢 𝑎 𝑣
𝑞

11 / 51

TM Computation

Definition 8 (Computation) : The process of computation by a TM on input 𝑤 ∈ Σ∗ is a sequence of
configurations 𝐶1, 𝐶2, …, 𝐶𝑛.
• 𝐶1 = (▹; 𝑞0; 𝑤) is the start configuration with input 𝑤 ∈ Σ∗.
• 𝐶𝑖 ⇒ 𝐶𝑖+1 for each 𝑖.
• 𝐶𝑛 is a final configuration.

Configuration 𝐶1 yields 𝐶2, denoted 𝐶1 ⇒ 𝐶2, if TM can move from 𝐶1 to 𝐶2 in one step.
• See the formal definition on the next slide.

The relation ⇒∗ is the reflexive and transitive closure of ⇒.
• 𝐶1 ⇒∗ 𝐶2 denotes “yields in some number of steps”.

12 / 51

TM Yields Relation

Definition 9 (Yields) : Let 𝑢, 𝑣 ∈ Γ∗, 𝑎, 𝑏, 𝑐 ∈ Γ, 𝑞𝑖, 𝑞𝑗 ∈ 𝑄.
• Move left: (𝑢𝑎; 𝑞𝑖; 𝑏𝑣) ⇒ (𝑢; 𝑞𝑗; 𝑎𝑐𝑣) if 𝛿(𝑞𝑖, 𝑏) = (𝑞𝑗, 𝑐, 𝐿) (overwrite 𝑏 with 𝑐, move left)
• Move right: (𝑢; 𝑞𝑖; 𝑏𝑎𝑣) ⇒ (𝑢𝑐; 𝑞𝑗; 𝑎𝑣) if 𝛿(𝑞𝑖, 𝑏) = (𝑞𝑗, 𝑐, 𝑅) (overwrite 𝑏 with 𝑐, move right)

𝑢 𝑎 𝑏 𝑣
𝑞𝑖

⇒
𝛿(𝑞𝑖,𝑏)=(𝑞𝑗,𝑐,𝐿)

𝑢 𝑎 𝑐 𝑣
𝑞𝑗

𝑢 𝑏 𝑎 𝑣
𝑞𝑖

⇒
𝛿(𝑞𝑖,𝑏)=(𝑞𝑗,𝑐,𝑅)

𝑢 𝑐 𝑎 𝑣
𝑞𝑗

Special case for the left end:
• (▹; 𝑞𝑖; 𝑏𝑣) ⇒ (▹; 𝑞𝑗; 𝑐𝑣) if 𝛿(𝑞𝑖, 𝑏) = (𝑞𝑗, 𝑐, 𝐿) (overwrite 𝑏 with 𝑐, do not move).

13 / 51

Recognizing vs Deciding
There are two types of Turing machines:
1. Total TM: always halts. Also called decider.
2. General TM: may loop forever. Also called recognizer.

Definition 10 (Recognition) : A TM recognizes a language 𝐿, if it halts and accepts all words 𝑤 ∈ 𝐿,
but no others. A language recognized by a TM is called semi-decidable or recursively enumerable or
recursively computable or Turing-recognizable. The set of all recognizable languages is denoted by RE.

Definition 11 (Decision) : A TM decides a language 𝐿, if it halts and accepts all words 𝑤 ∈ 𝐿, and halts
and rejects any other word 𝑤 ∉ 𝐿. A language decided by a TM is called decidable or recursive or
computable. The set of all decidable languages is denoted by R.

14 / 51

MIU. MU?

Definition 12 (MIU system): The MIU system is a “formal system” consisting of:
• an alphabet Σ = {M, I, U},
• a single axiom: MI,
• a set of inference rules:

Rule Description Example
𝑥I ⊢ 𝑥IU add U to the end of any string ending with I MI to MIU
M𝑥 ⊢ M𝑥𝑥 double the string after 𝑀 MIU to MIUIU
𝑥III𝑦 ⊢ 𝑥U𝑦 replace any III with U MUIIIU to MUUU
𝑥UU𝑦 ⊢ 𝑥𝑦 remove any 𝑈𝑈 MUUU to MU

Question: Is MU a theorem of the MIU system?

15 / 51

§3 Complexity

P and NP

Definition 13 : Class 𝑃 consists of problems that can be solved in polynomial time.

Equivalently, 𝐿 ∈ 𝑃 iff 𝐿 is decidable in polynomial time by a deterministic TM.

Examples : Shortest path, primality testing (AKS algorithm), linear programming.

Definition 14 : Class NP consists of problems where a certificate of a solution (“yes” answer) can be
verified in polynomial time.

Equivalently, 𝐿 ∈ NP iff 𝐿 is decidable in polynomial time by a non-deterministic TM.

Equivalently, 𝐿 ∈ NP iff 𝐿 is recognizable in polynomial time by a deterministic TM.

Examples : SAT, graph coloring, graph isomorphism, subset sum, knapsack, vertex cover, clique.

17 / 51

NP-Hard and NP-Complete

Definition 15 : A problem 𝐻 is NP-hard if every problem 𝐿 ∈ NP is polynomial-time reducible to 𝐻 .

Examples : Halting problem (undecidable), Traveling Salesman Problem (TSP).

Definition 16 : A problem 𝐻 is NP-complete if:
1. 𝐻 ∈ NP
2. 𝐻 is NP-hard

Examples : SAT, 3-SAT, Hamiltonian path… Actually, almost all NP problems are NP-complete!

Theorem 1 (Cook–Levin) : SAT is NP-complete.

18 / 51

co-NP

Definition 17 : Complexity class co-NP contains problems where “no” instances can be verified in
polynomial time.

Equivalently, 𝐿 ∈ co-NP iff the complement of 𝐿 is in NP:

co-NP = {𝐿 | 𝐿 ∈ NP}

Open question: NP ≟ co-NP? Implies P ≠ NP if false.

Examples :
• VALID: Check if a Boolean formula is always true (tautology).
• UNSAT: Check if a formula has no satisfying assignment.

19 / 51

Computational Hierarchy

P NP PSPACE EXP R RE

P ⊆ NP ⊆ PSPACE ⊆ EXP ⊂ R ⊂ RE

• RE
Languages accepted (recognized) by any TM.

• R = RE ∩ co-RE
Languages decided by any TM (always halt).

• EXP
Languages decided by a deterministic TM in exponential time.

• PSPACE
Languages decided by a deterministic TM in polynomial space.

• NP
Languages accepted (recognized) by any TM, or decided by a non-deterministic TM, in polynomial time.

• P
Languages decided by a deterministic TM in polynomial time.

20 / 51

Complexity Zoo
TODO

See also: https://complexityzoo.net/Petting_Zoo

21 / 51

https://complexityzoo.net/Petting_Zoo

§4 Computability

Computable Functions

Definition 18 (Church–Turing thesis) : Computable functions are exactly the functions that can be
calculated using a mechanical (that is, automatic) calculation device given unlimited amounts of time
and storage space.

“Every model of computation that has ever been imagined can compute only computable functions, and all
computable functions can be computed by any of several models of computation that are apparently very
different, such as Turing machines, register machines, lambda calculus and general recursive functions.”

Definition 19 (Computable function) : A partial function 𝑓 : ℕ𝑘 ↪ ℕ is computable (“can be
calculated”) if there exists a computer program with the following properties:
• If 𝑓(𝑥) is defined, then the program terminates on the input 𝑥 with the value 𝑓(𝑥) stored in memory.
• If 𝑓(𝑥) is undefined, then the program never terminates on the input 𝑥.

23 / 51

Effective Procedures

Definition 20 (Effective procedure) : An effective procedure is a finite, deterministic, mechanical
algorithm that guarantees to terminate and produce the correct answer in a finite number of steps.

An algorithm (set of instructions) is called an effective procedure if it:
• Consists of exact, finite steps.
• Always terminates in finite time.
• Produces the correct answer for given inputs.
• Requires no external assistance to execute.
• Can be performed manually, with pencil and paper.

Definition 21 : A function is computable if there exists an effective procedure that computes it.

24 / 51

Examples of Computable Functions
Examples:
• The function 𝑓(𝑥) = 𝑥2 is computable.
• The function 𝑓(𝑥) = 𝑥! is computable.
• The function 𝑓(𝑛) = “𝑛-th prime number” is computable.
• The function 𝑓(𝑛) = “the 𝑛-th digit of 𝜋” is computable.
• The Ackermann function is computable.
• The function that answers the question “Does God exist?” is computable.
• If the Collatz conjecture is true, the stopping time (number of steps to reach 1) of any 𝑛 is computable.

25 / 51

§5 Decidability

Decidable Sets

Definition 22 (Decidable set) : Given a universal set 𝒰, a set 𝑆 ⊆ 𝒰 is decidable (or computable,
or recursive) if there exists a computable function 𝑓 : 𝒰 ⟶ {0, 1} such that 𝑓(𝑥) = 1 iff 𝑥 ∈ 𝑆.

Examples :

• The set of all WFFs is decidable.
‣ We can check if a given string is well-formed by recursively verifying the syntax rules.

• For a given finite set Γ of WFFs, the set {𝛼 | Γ ⊨ 𝛼} of all tautological consequences of Γ is decidable.
‣ We can decide Γ ⊨ 𝛼 using a truth table algorithm by enumerating all possible interpretations

(at most 2|Γ|) and checking if each satisfies all formulas in Γ.

• The set of all tautologies is decidable.
‣ It is the set of all tautological consequences of the empty set.

27 / 51

Undecidable Sets

Definition 23 (Undecidable set) : A set 𝑆 is undecidable if it is not decidable.

Example : The existence of undecidable sets of expressions can be shown as follows.

An algorithm is completely determined by its finite description. Thus, there are only countably many
effective procedures. But there are uncountably many sets of expressions. (Why? The set of expressions is
countably infinite. Therefore, its power set is uncountable.) Hence, there are more sets of expressions than
there are possible effective procedures.

28 / 51

§6 Undecidability

Halting Problem

Definition 24 (Halting problem ) : Given a program and an input, determine whether the program
halts (stops after a finite time) on that input or loops forever.

Theorem 2 (Turing) : The halting problem is undecidable.

Proof sketch : Suppose there exists a procedure 𝐻 that decides the halting problem. We can construct a
program 𝑃 that takes itself as input and runs 𝐻 on it. If 𝐻 says that 𝑃 halts, then 𝑃 enters an infinite loop.
If 𝐻 says that 𝑃 does not halt, then 𝑃 halts. This leads to a contradiction, proving that 𝐻 cannot exist. □

30 / 51

https://en.wikipedia.org/wiki/Halting_problem

Halting Problem Pseudocode

def halts(P, x) -> bool:
 """
 Returns True if program P halts on input x.
 Returns False if P loops forever.
 """

def self_halts(P):
 if halts(P, P):
 while True: # loop forever
 else:
 return # halt

Observe that halts(self_halts, self_halts) cannot return neither True nor False. Contradition!

Thus, the halts does not exist (cannot be implemented), and thus the halting problem is undecidable.

31 / 51

Post Correspondence Problem

Definition 25 (Post correspondence problem ) : Given two finite lists 𝑎1, …, 𝑎𝑛 and 𝑏1, …, 𝑏𝑛 of
strings (over the alphabet with at least two symbols), determine whether there exists a sequence of
indices 𝑖1, …, 𝑖𝑘, such that 𝑎𝑖1

… 𝑎𝑖𝑘
= 𝑏𝑖1

… 𝑏𝑖𝑘
.

Example : Let 𝐴 = [𝑎, 𝑎𝑏, 𝑏𝑏𝑎], 𝐵 = [𝑏𝑎𝑎, 𝑎𝑎, 𝑏𝑏]. A solution is (3, 2, 3, 1):

𝑎3𝑎2𝑎3𝑎1 = 𝑏𝑏𝑎 ⋅ 𝑎𝑏 ⋅ 𝑏𝑏𝑎 ⋅ 𝑎 = 𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑎𝑎 = 𝑏𝑏 ⋅ 𝑎𝑎 ⋅ 𝑏𝑏 ⋅ 𝑏𝑎𝑎 = 𝑏3𝑏2𝑏3𝑏1

An alternative formulation of PCP is a collection of dominoes, each with a top and a bottom half, with an
unlimited supply of each block, and the goal is to find a sequence of blocks such that the string formed by
the top halves is equal to the string formed by the bottom halves.

𝑏𝑏𝑎
𝑏𝑏

𝑖1 = 3

𝑎𝑏
𝑎𝑎

𝑖2 = 2

𝑏𝑏𝑎
𝑏𝑏

𝑖3 = 3

𝑎
𝑏𝑎𝑎

𝑖4 = 1

32 / 51

https://en.wikipedia.org/wiki/Post_correspondence_problem

§7 Semi-decidability

Semi-decidability
Suppose we want to determine Σ ⊨ 𝛼, where Σ is infinite. In general, it is undecidable.

Definition 26 (Semi-decidable set) : A set 𝑆 is computably enumerable if there is an enumeration
procedure which lists, in some order, every member of 𝑆: 𝑠1, 𝑠2, 𝑠3…

Equivalently (see Theorem 3), a set 𝑆 is semi-decidable if there is an algorithm such that the set of
inputs for which the algorithm halts is exactly 𝑆.

Note : There are more synonyms for computably enumerable, such as effectively enumerable, recursively
enumerable (do not confuse with just recursive!), and Turing-recognizable, or simply recorgizable.

Note : If 𝑆 is infinite, the enumeration procedure will never finish, but every member of 𝑆 will be listed
eventually, after some finite amount of time.

Note : Some properties of decidable and semi-decidable sets:
• Decidable sets are closed under union, intersection, Cartesian product, and complement.
• Semi-decidable sets are closed under union, intersection, and Cartesian product.

34 / 51

Enumerability and Semi-decidability

Theorem 3 : A set 𝑆 is computably enumerable iff it is semi-decidable.

Proof (⇒) : If 𝑆 is computably enumerable, then it is semi-decidable.

Since 𝑆 is computably enumerable, we can check if 𝛼 ∈ 𝑆 by enumerating all members of 𝑆 and checking
if 𝛼 is among them. If it is, we answer “yes”; otherwise, we continue enumerating. Thus, if 𝛼 ∈ 𝑆, the
procedure produces “yes”. If 𝛼 ∉ 𝑆, the procedure runs forever. □

35 / 51

Enumerability and Semi-decidability [2]
Proof (⇐) : If 𝑆 is semi-decidable, then it is computably enumerable.

Suppose we have a procedure 𝑃 which, given 𝛼, terminates and produces “yes” iff 𝛼 ∈ 𝑆. To show that 𝑆 is
computably enumerable, we can proceed as follows.
1. Construct a systematic enumeration of all expressions (for example, by listing all strings over the

alphabet in length-lexicographical order): 𝛽1, 𝛽2, 𝛽3, …
2. Break the procedure 𝑃 into a finite number of “steps” (for example, by program instructions).
3. Run the procedure on each expression in turn, for an increasing number of steps (see dovetailing):

• Run 𝑃 on 𝛽1 for 1 step.
• Run 𝑃 on 𝛽1 for 2 steps, then on 𝛽2 for 2 steps.
• …
• Run 𝑃 on each of 𝛽1, …, 𝛽𝑛 for 𝑛 steps each.
• …

4. If 𝑃 produces “yes” for some 𝛽𝑖, output (yield) 𝛽𝑖 and continue enumerating.

This procedure will eventually list all members of 𝑆, thus 𝑆 is computably enumerable. □

36 / 51

https://en.wikipedia.org/wiki/Dovetailing_(computer_science)

Dual Enumerability and Decidability

Theorem 4 : A set is decidable iff both it and its complement are semi-decidable.

Proof (⇒) : If 𝐴 is decidable, then both 𝐴 and its complement 𝐴 are effectively enumerable.

Since 𝐴 is decidable, there exists an effective procedure 𝑃 that halts on all inputs and returs “yes” if 𝛼 ∈ 𝐴
and “no” otherwise.

To enumerate 𝐴:
• Systematically generate all expressions 𝛼1, 𝛼2, 𝛼3, …
• For each 𝛼𝑖, run 𝑃 . If 𝑃 outputs “yes”, yield 𝛼𝑖. Otherwise, continue.

Similarly, enumerate 𝐴 by yielding 𝛼𝑖 when 𝑃 outputs “no”.

Both enumerations are effective, since 𝑃 always halts, so 𝐴 and its complement are semi-decidable. □

37 / 51

Dual Enumerability and Decidability [2]
Proof (⇐) : If both 𝐴 and its complement 𝐴 are effectively enumerable, then 𝐴 is decidable.

Let 𝐸 be an enumerator for 𝐴 and 𝐸 an enumerator for 𝐴.

To decide if 𝛼 ∈ 𝐴, interleave the execution of 𝐸 and 𝐸, that is, for 𝑛 = 1, 2, 3, …
• Run 𝐸 for 𝑛 steps and if it produces 𝛼, halt and output “yes”.
• Run 𝐸 for 𝑛 steps and if it produces 𝛼, halt and output “no”.

Since 𝛼 is either in 𝐴 or in 𝐴, one of the enumerators will eventually produce 𝛼. The interleaving with
increasing number of steps ensures fair scheduling without starvation.

Remark: The “dovetailing” technique (alternating between enumerators with increasing step) avoids infinite
waiting while maintaining finite memory requirements. The alternative is to run both enumerators
simultaneosly, in parallel, using, for example, two computers. □

38 / 51

Enumerability of Tautological Consequences

Theorem 5 : If Σ is an effectively enumerable set of WFFs, then the set {𝛼 | Σ ⊨ 𝛼} of tautological
consequences of Σ is effectively enumerable.

Proof : Consider an enumeration of the elements of Σ: 𝜎1, 𝜎2, 𝜎3, …

By the compactness theorem, Σ ⊨ 𝛼 iff {𝜎1, …, 𝜎𝑛} ⊨ 𝛼 for some 𝑛.

Hence, it is sufficient to successively test (using truth tables)

∅ ⊨ 𝛼,
{𝜎1} ⊨ 𝛼,

{𝜎1, 𝜎2} ⊨ 𝛼,

and so on. If any of these tests succeeds (each is decidable), then Σ ⊨ 𝛼.

This demonstrates that there is an effective procedure that, given any WFF 𝛼, will output “yes” iff 𝛼 is a
tautological consequence of Σ. Thus, the set of tautological consequences of Σ is effectively enumerable. □

39 / 51

§8 Universal Machines

Universal Turing Machine
A universal Turing machine is a Turing machine that is capable of computing any computable sequence. [1]

Definition 27 : A universal Turing machine 𝑈TM is a Turing machine that can simulate any other TM.

High-level description of a universal Turing machine 𝑈TM:
• Given an input ⟨𝑀, 𝑤⟩, where 𝑀 is a TM and 𝑤 ∈ Σ∗:

‣ Run (simulate a computation of) 𝑀 on 𝑤.
‣ If 𝑀 halts and accepts 𝑤, 𝑈TM accepts ⟨𝑀, 𝑤⟩.
‣ If 𝑀 halts and rejects 𝑤, 𝑈TM rejects ⟨𝑀, 𝑤⟩.
‣ Implicitly, if 𝑀 loops on 𝑤, 𝑈TM loops on ⟨𝑀, 𝑤⟩.

Definition 28 : The language of a universal Turing machine 𝑈TM is the set 𝐴TM of all pairs (𝑀, 𝑤)
such that 𝑀 is a TM and 𝑀 accepts 𝑤.

𝐴TM = ℒ(𝑈TM) = {⟨𝑀, 𝑤⟩ | 𝑀 is a TM and 𝑤 ∈ ℒ(𝑀)}

41 / 51

Diagonalization Language
Consider all possible Turing machines, listed in some order, and
all strings that are valid TM descriptions:

⟨𝑀0⟩, ⟨𝑀1⟩, …

Definition 29 : Construct the diagonalization language 𝐿Δ of
all TMs that do not accept their own description:

𝐿Δ = ℒ(𝑀Δ) = {⟨𝑀⟩ | 𝑀 is a TM and ⟨𝑀⟩ ∉ ℒ(𝑀)}

Note : 𝑀Δ is not listed in the table, since its behavior differs from
each other 𝑀𝑖 at least on input ⟨𝑀𝑖⟩.

𝑀0

𝑀1

𝑀2

𝑀3

𝑀4

⟨𝑀0⟩ ⟨𝑀1⟩ ⟨𝑀2⟩ ⟨𝑀3⟩ ⟨𝑀4⟩

… … … … …

…

…

…

…

…

⋮

…

…

…𝑀Δ No

Acc No No Acc No

Acc

No

Acc Acc Acc Acc

Acc Acc

Acc

No No No

No Acc Acc

No

Acc Acc

No Acc No No

Acc

No

42 / 51

Diagonalization Language is not Recognizable
𝐿Δ = {⟨𝑀⟩ | ⟨𝑀⟩ ∉ ℒ(𝑀)}

Theorem 6 : 𝐿Δ ∉ RE.

Proof : Suppose 𝐿Δ is recognizable. Then there exists a recognizer 𝑅 such that ℒ(𝑅) = 𝐿Δ.

It is the case that either ⟨𝑅⟩ ∉ ℒ(𝑅) or ⟨𝑅⟩ ∈ ℒ(𝑅).

1. ⟨𝑅⟩ ∉ ℒ(𝑅). Thus, ⟨𝑅⟩ ∈ 𝐿Δ. Since ℒ(𝑅) = 𝐿Δ, ⟨𝑅⟩ ∉ ℒ(𝑅). Contradiction.

2. ⟨𝑅⟩ ∈ ℒ(𝑅). Thus, ⟨𝑅⟩ ∉ 𝐿Δ. Since ℒ(𝑅) = 𝐿Δ, ⟨𝑅⟩ ∈ ℒ(𝑅). Contradiction.

In either case, we reach a contradiction. Therefore, the initial assumption that 𝐿Δ is recognizable must be
false. Thus, 𝐿Δ is not recognizable. □

43 / 51

Universal Language
𝐴TM = ℒ(𝑈TM) = {⟨𝑀, 𝑤⟩ | 𝑀 is a TM and 𝑤 ∈ ℒ(𝑀)}

Theorem 7 : 𝐴TM ∈ RE.

Proof : 𝑈TM is a TM that recognizes 𝐴TM. □

Theorem 8 : 𝐴TM ∉ RE

Proof : 𝐿Δ ≤𝑀 𝐴TM. Build a recognizer (impossible) for 𝐿Δ using a (hypothetical) recognizer for 𝐴TM. □

Theorem 9 : 𝐴TM ∉ R.

Proof : R is closed under complement. A language 𝐴 is decidable iff it is both recognizable (𝐴 ∈ RE) and
co-recognizable (𝐴 ∈ RE). We know that 𝐴TM ∉ RE, thus 𝐴TM cannot be decidable. □

44 / 51

§9 Reductions

Mapping Reductions
TODO

46 / 51

Extremely Hard Problem
Regular languages are decidable. Some Turing machines accept regular languages and some do not.

Definition 30 : Let REGULAR be the language of all TMs that accept regular languages.

REGULARTM = {⟨𝑀⟩ | ℒ(𝑀) is regular}

This language is neither recognizable nor co-recognizable. (See theorems on the next slides.)

• No computer program can confirm that a given Turing machine has a regular language.
• No computer program can confirm that a given Turing machine has a non-regular language.
• This problem is beyond the limits of what computers can ever do.

47 / 51

REGULAR is not Recognizable

Theorem 10 : REGULARTM ∉ RE.

Proof : 𝐿Δ ≤𝑀 REGULARTM. □

48 / 51

REGULAR is not even co-Recognizable

Theorem 11 : REGULARTM ∉ co-RE

Proof : 𝐿Δ ≤𝑀 REGULARTM. □

49 / 51

TODO
Decidable language outside of NP
Universal TM
Encodings
Programs
Rice’s theorem

50 / 51

Bibliography
[1] A. M. Turing, “On Computable Numbers, with an Application to the Entscheidungsproblem,”

Proceedings of the London Mathematical Society, no. 1, pp. 230–265, 1937, doi: 10.1112/plms/s2-42.1.230.

51 / 51

https://doi.org/10.1112/plms/s2-42.1.230

	Languages
	Formal Languages
	Decision Problems as Languages
	Language Classes

	Machines
	Finite Automata
	Turing Machines
	TM Formal Definition
	TM Language
	TM Configuration
	TM Computation
	TM Yields Relation
	Recognizing vs Deciding
	MIU. MU?

	Complexity
	P and NP
	NP-Hard and NP-Complete
	co-NP
	Computational Hierarchy
	Complexity Zoo

	Computability
	Computable Functions
	Effective Procedures
	Examples of Computable Functions

	Decidability
	Decidable Sets
	Undecidable Sets

	Undecidability
	Halting Problem
	Halting Problem Pseudocode
	Post Correspondence Problem

	Semi-decidability
	Semi-decidability
	Enumerability and Semi-decidability
	Dual Enumerability and Decidability
	Enumerability of Tautological Consequences

	Universal Machines
	Universal Turing Machine
	Diagonalization Language
	Diagonalization Language is not Recognizable
	Universal Language

	Reductions
	Mapping Reductions
	Extremely Hard Problem
	REGULAR is not Recognizable
	REGULAR is not even co-Recognizable
	TODO
	Bibliography

