Formal Methods in Software Engineering

Specification and Verification – Spring 2025

Konstantin Chukharev

§1 Program Verification

Motivation

Is this program *correct*?

```
x = 0;
y = a;
while (y > 0) {
    x = x + b;
    y = y - 1;
}
```

Program Correctness

Note: A program can be *correct* only with respect to a *specification*.

Is this program correct with respect to the following specification? \times

"Given integers a and b, the program computes and stores in x the product of a and b."

Program Correctness [2]

Note: A program can be *correct* only with respect to a *specification*.

Is this program correct with respect to the following specification? \checkmark

"Given **positive** integers a and b, the program computes and stores in x the product of a and b."

```
x = 0;
y = a;
while (y > 0) {
    x = x + b;
    y = y - 1;
}
```

Design by Contract

Specification of a program can be seen as a *contract*:

- *Pre-conditions* define what is *required* to get a meaningful result.
- *Post-conditions* define what is *guaranteed* to return when the pre-condition is met.

requires a and *b* to be positive integers *ensures x* is the product of *a* and *b*

Formal Verification

To formally verify a program you need:

- A formal specification (mathematical description) of the program.
- A formal proof that the specification is correct.
- Automated tools for verification and reasoning.
- Domain-specific expertise.

There are many tools and even specific languages for writing specs and verifying them.

One of them is *Dafny*, both a specification language and a program verifier.

Next, we are going to learn how to:

- *specify* precisely what a program is supposed to do
- *prove* that the specification is correct
- *verify* that the program behaves as specified
- *derive* a program from a specification
- use the *Dafny* programming language and verifier

§2 Dafny

Introduction to Dafny

```
method Triple(x: int) returns (r: int)
    ensures r == 3 * x
{
    var y := 2 * x;
    r := x + y;
}
```

Note: The *caller* does not need to know anything about the *implementation* of the method, only its *specification*, which abstracts the method's behavior. The method is *opaque* to the caller.

Introduction to Dafny [2]

Completing the example:

```
method Triple(x: int) returns (r: int)
  requires x >= 0
  ensures r == 3 * x
{
   var y := Double(x);
   r := x + y;
}
method Double(x: int) returns (r: int)
  requires x >= 0
  ensures r == 2 * x
```

Exercise: Fix the above code/spec to avoid requires $x \ge 0$ in the Triple method.

Logic in Dafny

Dafny expression	Description
true, false	constants
!A	"not A"
Α && Β	" A and B "
A B	<i>"A</i> or <i>B</i> "
A ==> B	"A implies B " or "A only if B "
A <==> B	<i>"A</i> iff <i>B</i> "
forall x :: A	"for all x , A is true"
exists x :: A	"there exists x such that A is true"

Precedence order: !, &&, | |, ==>, <==>

Verifying the Imperative Procedure

Below is the Dafny program for computing the maximum segment sum of an array. Source: [1]

```
// find the index range [k..m) that gives the
largest sum of any index range
method MaxSegSum(a: array<int>)
  returns (k: int, m: int)
  ensures 0 \le k \le m \le a.Length
  ensures forall p, q ::
           0 \le p \le q \le a.Length ==>
           Sum(a, p, q) \leq Sum(a, k, m)
{
  k. m := 0. 0:
  var s. n. c. t := 0. 0. 0. 0:
  while n < a.Length
    invariant 0 \le k \le m \le n \le a.Length &&
                s == Sum(a, k, m)
    invariant forall p, q ::
                0 \le p \le q \le n \Longrightarrow Sum(a, p, q) \le s
    invariant 0 \le c \le n \&\& t == Sum(a, c, n)
    invariant forall b ::
                0 \le b \le n \Longrightarrow Sum(a, b, n) \le t
```

```
t. n := t + a[n]. n + 1:
    if t < 0 {
      c, t := n, 0;
    } else if s < t {</pre>
      k. m. s := c. n. t:
}
// sum of the elements in the index range [m..n)
function Sum(a: array<int>, m: int, n: int): int
  requires 0 \le m \le n \le a.Length
  reads a
  if m == n then 0
  else Sum(a, m, n-1) + a[n-1]
}
```

Program State

```
method MyMethod(x: int) returns (y: int)
  requires x >= 10
  ensures y >= 25
{
    var a := x + 3;
    var b := 12;
    y := a + b;
}
```

The program variables x, y, a, and b, together the method's *state*.

Note: Not all program variables are in scope the whole time.

Floyd Logic

```
Let's propagate the pre-condition forward:
method MyMethod(x: int) returns (y: int)
  requires x \ge 10
  ensures y \ge 25
{
  // here, we know x >= 10
  var a := x + 3;
  // here, x >= 10 && a == x+3
  var b := 12;
  // here, x >= 10 && a == x+3 && b == 12
  y := a + b;
  // here, x >= 10 && a == x+3 && b == 12 && v == a + b
}
```

The last constructed condition *implies* the required post-condition:

$$(x\geq 10) \land (a=x+3) \land (b=12) \land (y=a+b) \rightarrow (y\geq 25)$$

Floyd Logic [2]

Now, let's go *backward* starting with a post-condition at the last statement:

```
method MyMethod(x: int) returns (y: int)
  requires x >= 10
  ensures y >= 25
{
    // here, we want x + 3 + 12 >= 25
    var a := x + 3;
    // here, we want a + 12 >= 25
    var b := 12;
    // here, we want a + b >= 25
    y := a + b;
    // here, we want y >= 25
}
```

The last calculated condition is *implied* by the given pre-condition:

 $(x+3+12 \geq 25) \leftarrow (x \geq 10)$

Exercise #1

Consider a method with the type signature below which returns in s the sum of x and y, and in m the maximum of x and y:

```
method MaxSum(x: int, y: int)
  returns (s: int, m: int)
  ensures ...
```

Write the post-condition specification for this method.

Exercise #2

Consider a method that attempts to reconstruct the arguments x and y from the return values of MaxSum. In other words, in other words, consider a method with the following type signature and *the same post-condition* as in Exercise 1:

```
method ReconstructFromMaxSum(s: int, m: int)
  returns (x: int, y: int)
  requires ...
  ensures ...
```

This method cannot be implemented as is.

Write an appropriate pre-condition for the method that allows you to implement it.

§3 Floyd-Hoare Logic

From Contracts to Floyd-Hoare Logic

In the design-by-contract methodology, contracts are usually assigned to procedures or modules. In general, it is possible to assign contracts to each statement of a program.

A formal framework for doing this was developed by Tony Hoare [2], formalizing a reasoning technique introduced by Robert Floyd [3].

It is based on the notion of a *Hoare triple*.

Dafny is based on Floyd-Hoare Logic.

Robert Floyd

Tony Hoare

Hoare Triples

Definition 1: For predicates P and Q, and a problem S, the Hoare triple $\{P\} S \{Q\}$ describes how the execution of a piece of code changes the state of the computation.

It can be read as "if S is started in any state that satisfies P, then S will terminate (and does not crash) in a state that satisfies Q".

Examples:

 $\begin{array}{ll} \{x=1\} & x:=20 & \{x=20\} \\ \{x<18\} & y:=18-x & \{y\geq 0\} \\ \{x<18\} & y:=5 & \{y\geq 0\} \end{array}$

Non-examples:

 $\{x<18\}\quad x\coloneqq y\quad \{y\geq 0\}$

Forward Reasoning

Definition 2: *Forward reasoning* is a construction of a *post-condition* from a given pre-condition.

Note: In general, there are *many* possible post-conditions.

Examples:

$$\begin{array}{ll} \{x=0\} & y:=x+3 & \{y<100\} \\ \{x=0\} & y:=x+3 & \{x=0\} \\ \{x=0\} & y:=x+3 & \{0\leq x,y=3\} \\ \{x=0\} & y:=x+3 & \{3\leq y\} \\ \{x=0\} & y:=x+3 & \{\text{true}\} \end{array}$$

Strongest Post-condition

Forward reasoning constructs the *strongest* (i.e., *the most specific*) post-condition.

 $\{x=0\}\quad y\coloneqq x+3\quad \{0\leq x\wedge y=3\}$

Definition 3: *A* is *stronger* than *B* if $A \rightarrow B$ is a valid formula.

Definition 4: A formula is *valid* if it is true for any valuation of its free variables.

Backward Reasoning

Definition 5: *Backward reasoning* is a construction of a *pre-condition* for a given post-condition.

Note: Again, there are *many* possible pre-conditions.

Examples:

$\{x \le 70\}$	$y \coloneqq x + 3$	$\{y\leq 80\}$
$\{x = 65, y < 21\}$	$y \coloneqq x + 3$	$\{y\leq 80\}$
$\{x \le 77\}$	$y \coloneqq x + 3$	$\{y\leq 80\}$
$\{x \cdot x + y \cdot y \le 2500\}$	$y \coloneqq x + 3$	$\{y\leq 80\}$
{false}	$y \coloneqq x + 3$	$\{y \le 80\}$

Weakest Pre-condition

Backward reasoning constructs the *weakest* (i.e., *the most general*) pre-condition.

 $\{x \le 77\} \quad y \coloneqq x + 3 \quad \{y \le 80\}$

Definition 6: *A* is *weaker* than *B* if $B \rightarrow A$ is a valid formula.

Weakest Pre-condition for Assignment

Definition 7: The weakest pre-condition for an *assignment* statement x := E with a post-condition Q, is constructed by replacing each x in Q with E, denoted Q[x := E].

$$\{Q[x \coloneqq E]\} \quad x \coloneqq E \quad \{Q\}$$

Example: Given a Hoare triple $\{?\}$ y := a + b $\{25 \le y\}$, we construct a pre-condition $\{25 \le a + b\}$.

Examples:

$$\begin{array}{ll} \{25 \leq x+3+12\} & a \coloneqq x+3 & \{25 \leq a+12\} \\ & \{x+1 \leq y\} & x \coloneqq x+1 & \{x \leq y\} \\ & \{6x+5y<100\} & x \coloneqq 2 \cdot x & \{3x+5y<100\} \end{array}$$

Exercises

1. Explain rigorously why each of these Hoare triples holds:

1.
$$\{x = y\}$$
 $z := x - y$ $\{z = 0\}$ 2. $\{\text{true}\}$ $x := 100$ $\{x = 100\}$ 3. $\{\text{true}\}$ $x := 2 * y$ $\{x \text{ is even}\}$ 4. $\{x = 89\}$ $y := x - 34$ $\{x = 89\}$ 5. $\{x = 3\}$ $x := x + 1$ $\{x = 4\}$ 6. $\{0 \le x < 100\}$ $x := x + 1$ $\{0 < x \le 100\}$

2. For each of the following Hoare triples, find the *strongest post-condition*:

3. For each of the following Hoare triples, find the *weakest pre-condition*:

Swap Example

Consider the following program that swaps the values of x and y using a temporary variable.

```
var tmp := x;
x := y;
y := tmp;
```

Let's prove that it indeed swaps the values, by performing the backward reasoning on it. First, we need a way to refer to the initial values of x and y in the post-condition. For this, we use *logical variables* that stand for some values (initially, x = X and y = Y) in our proof, yet cannot be used in the program itself.

```
    // { x == X, y == Y }
    // { ? }
    var tmp := x;
    // { ? }
    x := y;
    // { ? }
    y := tmp
    // { y == Y, x == X }
```

Simultaneous Assignment

Dafny allows simultaneous assignment of multiple variables in a single statement.

Examples:

 $x, y \coloneqq 3, 10$ sets x to 3 and y to 10

x, y = x + y, x - y sets x to the sum of x, and y and y to their difference

All right-hand sides are evaluated *before* any variables are assigned.

Note: The last example is *different* from the two statements x = x + y; y = x - y;

Weakest Pre-condition for Simultaneous Assignment

Definition 8: The weakest pre-condition for a *simultaneous assignment* $x_1, x_2 := E_1, E_2$ is constructed by replacing each x_1 with E_1 and each x_2 with E_2 in post-condition Q.

$$Q[x_1 \coloneqq E_1, x_2 \coloneqq E_2] \quad x_1, x_2 \coloneqq E_1, E_2 \quad \{Q\}$$

Example: Going *backward* in the following "swap" program:

```
    // { x == X, y == Y } -- initial state
    // { y == Y, x == X } -- weakest pre-condition
    x, y = y, x
    // { x == Y, y == X } -- final "swapped" state
```

Weakest Pre-condition for Variable Introduction

Note: The statement var x := tmp; is actually *two* statements: var x; x := tmp.

What is true about x in the post-condition, must have been true for all x before the variable introduction.

```
\{\forall x. Q\} \quad \text{var } x \quad \{Q\}
```

Examples:

- $\{\forall x. 0 \le x\}$ var x $\{0 \le x\}$
- $\{ \forall x. \ 0 \leq x \cdot x \}$ var x $\{ 0 \leq x \cdot x \}$

Strongest Post-condition for Assignment

Consider the Hoare triple

$$\{w < x, x < y\} \quad x \coloneqq 100 \quad \{?\}$$

Obviously, x = 100 is a post-condition, however it is *not the strongest*.

Something *more* is implied by the pre-condition: there exists an n such that $(w < n) \land (n < y)$, which is equivalent to w + 1 < y.

In general:

$$\{P\} \quad x\coloneqq E \quad \{\exists n.\ P[x\coloneqq n] \land x=E[x\coloneqq n]\}$$

Exercises

Replace the "?" in the following Hoare triples by computing *strongest post-conditions*.

 1. $\{y = 10\}$ x := 12 $\{?\}$

 2. $\{98 \le y\}$ x := x + 1 $\{?\}$

 3. $\{98 \le x\}$ x := x + 1 $\{?\}$

 4. $\{98 \le y < x\}$ x := 3y + x $\{?\}$

$\mathcal{WP} \text{ and } \mathcal{SP}$

Let P be a predicate on the *pre-state* of a program S, and let Q be a predicate on the *post-state* of S.

 $\mathcal{WP}[\![\,S,Q\,]\!] \text{ denotes the } \textit{weakest pre-condition} \text{ of } S \text{ w.r.t. } Q.$

- $\mathcal{WP}[\![\operatorname{var} x, Q]\!] = \forall x. Q$
- $\bullet \ \mathcal{WP}[\![\,x\coloneqq E,Q\,]\!]=Q[x\coloneqq E]$
- $\bullet \hspace{0.2cm} \mathcal{WP}[\![\hspace{-1.5pt}[(x_1, x_2 \coloneqq E_1, E_2), Q \hspace{-1.5pt}]]\!] = Q[x_1 \coloneqq E_1, x_2 \coloneqq E_2]$

 $\mathcal{SP}[\![\,S,P\,]\!] \text{ denotes the } \textit{strongest post-condition} \text{ of } S \text{ w.r.t. } P.$

• $\mathcal{SP}[\![\operatorname{var} x, P]\!] = \exists x. P$

•
$$\mathcal{SP}\llbracket x \coloneqq E, P \rrbracket = \exists n. P[x \coloneqq n] \land x = E[x \coloneqq n]$$

Exercise: Compute the following pre- and post-conditions:

- $\begin{array}{ll} & \mathcal{WP}[\![x \coloneqq y, x + y \leq 100]\!] & & & \mathcal{SP}[\![x \coloneqq z \coloneqq y, x + y \leq 100]\!] \\ & & \mathcal{WP}[\![x \coloneqq -x, x + y \leq 100]\!] & & & \mathcal{SP}[\![x \coloneqq z \coloneqq x + y, x + y \leq 100]\!] \\ & & \mathcal{WP}[\![z \coloneqq x + y, x + y \leq 100]\!] & & & & \mathcal{SP}[\![z \coloneqq z \coloneqq x + y, x + y \leq 100]\!] \\ & & & \mathcal{WP}[\![v = x, x < 100]\!] & & & & \mathcal{SP}[\![v = z \coloneqq y + y, x + y \leq 100]\!] \\ \end{array}$
 - $\mathcal{SP}[\![x \coloneqq 5, x+y \le 100]\!]$
 - $\bullet \ \mathcal{SP}[\![\,x \coloneqq x+1, x+y \leq 100\,]\!]$
 - $\bullet \ \mathcal{SP}[\![\, x \coloneqq 2y, x+y \leq 100 \,]\!]$
 - $\bullet \ \mathcal{SP}[\![\,z\coloneqq x+y,x+y\leq 100\,]\!]$
 - $\mathcal{SP}[\![\operatorname{var}\, x, x \leq 100\,]\!]$

Control Flow

Statement	Program
Assignment	$x \coloneqq E$
Local variable	var x
Composition	S;T
Condition	if B then $\{S\}$ else $\{T\}$
Assumption	assume P
Assertion	assert P
Method call	$r\coloneqq M(E)$
Loop	while B do $\{S\}$

Sequential Composition

 $\begin{array}{c} S;T\\ \{P\}\;S\;\{Q\}\;T\;\{R\}\\ \{P\}\;S\;\{Q\} \ \ \text{and} \ \ \{Q\}\;T\;\{R\}\end{array}$

Strongest post-condition:

- Let $Q = \mathcal{SP}[\![\,S,P\,]\!]$
- $\bullet \hspace{0.1 in} \mathcal{SP}[\hspace{-0.15cm}[\hspace{0.15cm} (S;T),P\hspace{-0.15cm}]]=\mathcal{SP}[\hspace{-0.15cm}[\hspace{0.15cm} T,Q\hspace{-0.15cm}]]=\mathcal{SP}[\hspace{-0.15cm}[\hspace{0.15cm} T,\mathcal{SP}[\hspace{-0.15cm}[\hspace{0.15cm} S,P\hspace{-0.15cm}]]\hspace{-0.15cm}]]$

Weakest pre-condition:

- Let $Q = \mathcal{WP} \llbracket T, R \rrbracket$
- $\bullet \hspace{0.1 cm} \mathcal{WP}[\![\hspace{0.1 cm}(S;T),R\hspace{0.1 cm}]\!] = \mathcal{WP}[\![\hspace{0.1 cm}S,Q\hspace{0.1 cm}]\!] = \mathcal{WP}[\![\hspace{0.1 cm}S,\mathcal{WP}[\![\hspace{0.1 cm}T,R\hspace{0.1 cm}]\!]\hspace{0.1 cm}]$

Conditional Control Flow

$$P$$
 if B then $\{S\}$ else $\{T\}$ $\{Q\}$

1.
$$(P \land B) \to V$$

2. $(P \land \neg B) \to W$
3. $\{V\} S \{X\}$
4. $\{W\} T \{Y\}$
5. $X \to Q$
6. $Y \to Q$

{

Strongest Post-condition for Condition

$$\{P\} \text{ if } B \text{ then } \{S\} \text{ else } \{T\} \quad \{Q\}$$
$$V = P \land B$$
$$W = P \land \neg B$$
$$X = \mathcal{SP}[\![S, P \land B]\!]$$
$$Y = \mathcal{SP}[\![T, P \land \neg B]\!]$$
$$\mathcal{SP}[\![\text{ if } B \text{ then } \{S\} \text{ else } \{T\}, P]\!] =$$
$$= X \lor Y =$$
$$= \mathcal{SP}[\![S, P \land B]\!] \lor \mathcal{SP}[\![T, P \land \neg B]\!]$$

Weakest Pre-condition for Condition

$$\begin{array}{l} \{P\} \quad \text{if } B \text{ then } \{S\} \text{ else } \{T\} \quad \{Q\} \\ \\ \mathcal{WP}\llbracket \text{ if } B \text{ then } \{S\} \text{ else } \{T\}, Q \rrbracket = \\ \\ = (B \to V) \land (\neg B \to W) = \\ \\ = (B \to \mathcal{WP}\llbracket S, Q \rrbracket) \land (\neg B \to \mathcal{WP}\llbracket T, Q \rrbracket) \\ \\ \\ \\ \\ \end{array}$$

$$V = \mathcal{WP}[S, Q]$$
$$W = \mathcal{WP}[T, Q]$$

X = QY = Q

Example

```
// \{ (x < 3 ==> x == 89) \& (x >= 3 ==> x == 50) \}
if x < 3 {
 // { x == 89 }
 // \{ x + 1 + 10 == 100 \}
 x, y := x + 1, 10;
 // { x + y == 100 }
} else {
 // { x == 50 }
// \{ x + x == 100 \}
y := x;
// { x + y == 100 }
}
```

// { x + y == 100 }

Bibliography

- M. Leino and K. Rustan, "Accessible Software Verification with Dafny," *IEEE Software*, vol. 34, no. 6, pp. 94–97, Nov. 2017, doi: <u>10.1109/MS.2017.4121212</u>.
- [2] C. A. R. Hoare, "An Axiomatic Basis for Computer Programming," *Communications of the ACM*, vol. 12, no. 10, pp. 576–580, 1969, doi: <u>10.1145/363235.363259</u>.
- [3] R. W. Floyd, "Assigning Meanings to Programs," *Mathematical Aspects of Computer Science*, vol. 19. American Mathematical Society, pp. 19–32, 1967.