
Formal Methods in Software Engineering
Specification and Verification — Spring 2025
Konstantin Chukharev

§1 Program Verification

Motivation
Is this program correct?

x = 0;
y = a;
while (y > 0) {
 x = x + b;
 y = y - 1;
}

3 / 41

Program Correctness
Note : A program can be correct only with respect to a specification.

Is this program correct with respect to the following specification? ✗
“Given integers 𝑎 and 𝑏, the program computes and stores in 𝑥 the product of 𝑎 and 𝑏.”

4 / 41

Program Correctness [2]
Note : A program can be correct only with respect to a specification.

Is this program correct with respect to the following specification? ✓
“Given positive integers 𝑎 and 𝑏, the program computes and stores in 𝑥 the product of 𝑎 and 𝑏.”

x = 0;
y = a;
while (y > 0) {
 x = x + b;
 y = y - 1;
}

5 / 41

Design by Contract
Specification of a program can be seen as a contract:
• Pre-conditions define what is required to get a meaningful result.
• Post-conditions define what is guaranteed to return when the pre-condition is met.

requires 𝑎 and 𝑏 to be positive integers
ensures 𝑥 is the product of 𝑎 and 𝑏

6 / 41

Formal Verification
To formally verify a program you need:
• A formal specification (mathematical description) of the program.
• A formal proof that the specification is correct.
• Automated tools for verification and reasoning.
• Domain-specific expertise.

There are many tools and even specific languages for writing specs and verifying them.

One of them is Dafny, both a specification language and a program verifier.

Next, we are going to learn how to:
• specify precisely what a program is supposed to do
• prove that the specification is correct
• verify that the program behaves as specified
• derive a program from a specification
• use the Dafny programming language and verifier

7 / 41

§2 Dafny

Introduction to Dafny
method Triple(x: int) returns (r: int)
 ensures r == 3 * x
{
 var y := 2 * x;
 r := x + y;
}

Note : The caller does not need to know anything about the implementation of the method, only its
specification, which abstracts the method’s behavior. The method is opaque to the caller.

9 / 41

Introduction to Dafny [2]
Completing the example:

method Triple(x: int) returns (r: int)
 requires x >= 0
 ensures r == 3 * x
{
 var y := Double(x);
 r := x + y;
}

method Double(x: int) returns (r: int)
 requires x >= 0
 ensures r == 2 * x

Exercise: Fix the above code/spec to avoid requires x >= 0 in the Triple method.

10 / 41

Logic in Dafny

Dafny expression Description
true, false constants
!A “not 𝐴”
A && B “𝐴 and 𝐵”
A || B “𝐴 or 𝐵”
A ==> B “𝐴 implies 𝐵” or “𝐴 only if 𝐵”
A <==> B “𝐴 iff 𝐵”
forall x :: A “for all 𝑥, 𝐴 is true”
exists x :: A “there exists 𝑥 such that 𝐴 is true”

Precedence order: !, &&, ||, ==>, <==>

11 / 41

Verifying the Imperative Procedure
Below is the Dafny program for computing the maximum segment sum of an array. Source: [1]

// find the index range [k..m) that gives the
largest sum of any index range
method MaxSegSum(a: array<int>)
 returns (k: int, m: int)
 ensures 0 ≤ k ≤ m ≤ a.Length
 ensures forall p, q ::
 0 ≤ p ≤ q ≤ a.Length ==>
 Sum(a, p, q) ≤ Sum(a, k, m)
{
 k, m := 0, 0;
 var s, n, c, t := 0, 0, 0, 0;
 while n < a.Length
 invariant 0 ≤ k ≤ m ≤ n ≤ a.Length &&
 s == Sum(a, k, m)
 invariant forall p, q ::
 0 ≤ p ≤ q ≤ n ==> Sum(a, p, q) ≤ s
 invariant 0 ≤ c ≤ n && t == Sum(a, c, n)
 invariant forall b ::
 0 ≤ b ≤ n ==> Sum(a, b, n) ≤ t

 {
 t, n := t + a[n], n + 1;
 if t < 0 {
 c, t := n, 0;
 } else if s < t {
 k, m, s := c, n, t;
 }
 }
}

// sum of the elements in the index range [m..n)
function Sum(a: array<int>, m: int, n: int): int
 requires 0 ≤ m ≤ n ≤ a.Length
 reads a
{
 if m == n then 0
 else Sum(a, m, n-1) + a[n-1]
}

12 / 41

Program State
method MyMethod(x: int) returns (y: int)
 requires x >= 10
 ensures y >= 25
{
 var a := x + 3;
 var b := 12;
 y := a + b;
}

The program variables x, y, a, and b, together the method’s state.

Note : Not all program variables are in scope the whole time.

13 / 41

Floyd Logic
Let’s propagate the pre-condition forward:

method MyMethod(x: int) returns (y: int)
 requires x >= 10
 ensures y >= 25
{
 // here, we know x >= 10
 var a := x + 3;
 // here, x >= 10 && a == x+3
 var b := 12;
 // here, x >= 10 && a == x+3 && b == 12
 y := a + b;
 // here, x >= 10 && a == x+3 && b == 12 && y == a + b
}

The last constructed condition implies the required post-condition:

(𝑥 ≥ 10) ∧ (𝑎 = 𝑥 + 3) ∧ (𝑏 = 12) ∧ (𝑦 = 𝑎 + 𝑏) → (𝑦 ≥ 25)

14 / 41

Floyd Logic [2]
Now, let’s go backward starting with a post-condition at the last statement:

method MyMethod(x: int) returns (y: int)
 requires x >= 10
 ensures y >= 25
{
 // here, we want x + 3 + 12 >= 25
 var a := x + 3;
 // here, we want a + 12 >= 25
 var b := 12;
 // here, we want a + b >= 25
 y := a + b;
 // here, we want y >= 25
}

The last calculated condition is implied by the given pre-condition:

(𝑥 + 3 + 12 ≥ 25) ← (𝑥 ≥ 10)

15 / 41

Exercise #1
Consider a method with the type signature below which returns in s the sum of x and y, and in m the
maximum of x and y:

method MaxSum(x: int, y: int)
 returns (s: int, m: int)
 ensures ...

Write the post-condition specification for this method.

16 / 41

Exercise #2
Consider a method that attempts to reconstruct the arguments x and y from the return values of MaxSum.
In other words, in other words, consider a method with the following type signature and the same post-
condition as in Exercise 1:

method ReconstructFromMaxSum(s: int, m: int)
 returns (x: int, y: int)
 requires ...
 ensures ...

This method cannot be implemented as is.
Write an appropriate pre-condition for the method that allows you to implement it.

17 / 41

§3 Floyd-Hoare Logic

From Contracts to Floyd-Hoare Logic
In the design-by-contract methodology, contracts are usually assigned
to procedures or modules. In general, it is possible to assign contracts
to each statement of a program.

A formal framework for doing this was developed by Tony Hoare [2],
formalizing a reasoning technique introduced by Robert Floyd [3].

It is based on the notion of a Hoare triple. Robert Floyd Tony Hoare
Dafny is based on Floyd-Hoare Logic.

19 / 41

https://en.wikipedia.org/wiki/Robert_W._Floyd
https://en.wikipedia.org/wiki/Tony_Hoare

Hoare Triples

Definition 1 : For predicates 𝑃 and 𝑄, and a problem 𝑆, the Hoare triple {𝑃} 𝑆 {𝑄} describes how
the execution of a piece of code changes the state of the computation.

It can be read as “if 𝑆 is started in any state that satisfies 𝑃 , then 𝑆 will terminate (and does not crash)
in a state that satisfies 𝑄”.

Examples :

{𝑥 = 1} 𝑥 ≔ 20 {𝑥 = 20}
{𝑥 < 18} 𝑦 ≔ 18 − 𝑥 {𝑦 ≥ 0}
{𝑥 < 18} 𝑦 ≔ 5 {𝑦 ≥ 0}

Non-examples :

{𝑥 < 18} 𝑥 ≔ 𝑦 {𝑦 ≥ 0}

20 / 41

Forward Reasoning

Definition 2 : Forward reasoning is a construction of a post-condition from a given pre-condition.

Note : In general, there are many possible post-conditions.

Examples :

{𝑥 = 0} 𝑦 ≔ 𝑥 + 3 {𝑦 < 100}
{𝑥 = 0} 𝑦 ≔ 𝑥 + 3 {𝑥 = 0}
{𝑥 = 0} 𝑦 ≔ 𝑥 + 3 {0 ≤ 𝑥, 𝑦 = 3}
{𝑥 = 0} 𝑦 ≔ 𝑥 + 3 {3 ≤ 𝑦}
{𝑥 = 0} 𝑦 ≔ 𝑥 + 3 {true}

21 / 41

Strongest Post-condition
Forward reasoning constructs the strongest (i.e., the most specific) post-condition.

{𝑥 = 0} 𝑦 ≔ 𝑥 + 3 {0 ≤ 𝑥 ∧ 𝑦 = 3}

Definition 3 : 𝐴 is stronger than 𝐵 if 𝐴 → 𝐵 is a valid formula.

Definition 4 : A formula is valid if it is true for any valuation of its free variables.

22 / 41

Backward Reasoning

Definition 5 : Backward reasoning is a construction of a pre-condition for a given post-condition.

Note : Again, there are many possible pre-conditions.

Examples :

{𝑥 ≤ 70} 𝑦 ≔ 𝑥 + 3 {𝑦 ≤ 80}
{𝑥 = 65, 𝑦 < 21} 𝑦 ≔ 𝑥 + 3 {𝑦 ≤ 80}

{𝑥 ≤ 77} 𝑦 ≔ 𝑥 + 3 {𝑦 ≤ 80}
{𝑥 ⋅ 𝑥 + 𝑦 ⋅ 𝑦 ≤ 2500} 𝑦 ≔ 𝑥 + 3 {𝑦 ≤ 80}

{false} 𝑦 ≔ 𝑥 + 3 {𝑦 ≤ 80}

23 / 41

Weakest Pre-condition
Backward reasoning constructs the weakest (i.e., the most general) pre-condition.

{𝑥 ≤ 77} 𝑦 ≔ 𝑥 + 3 {𝑦 ≤ 80}

Definition 6 : 𝐴 is weaker than 𝐵 if 𝐵 → 𝐴 is a valid formula.

24 / 41

Weakest Pre-condition for Assignment

Definition 7 : The weakest pre-condition for an assignment statement 𝑥 ≔ 𝐸 with a post-condition 𝑄,
is constructed by replacing each 𝑥 in 𝑄 with 𝐸, denoted 𝑄[𝑥 ≔ 𝐸].

{𝑄[𝑥 ≔ 𝐸]} 𝑥 ≔ 𝐸 {𝑄}

Example : Given a Hoare triple {?} 𝑦 ≔ 𝑎 + 𝑏 {25 ≤ 𝑦}, we construct a pre-condition {25 ≤ 𝑎 + 𝑏}.

Examples :

{25 ≤ 𝑥 + 3 + 12} 𝑎 ≔ 𝑥 + 3 {25 ≤ 𝑎 + 12}
{𝑥 + 1 ≤ 𝑦} 𝑥 ≔ 𝑥 + 1 {𝑥 ≤ 𝑦}

{6𝑥 + 5𝑦 < 100} 𝑥 ≔ 2 ⋅ 𝑥 {3𝑥 + 5𝑦 < 100}

25 / 41

Exercises
1. Explain rigorously why each of these Hoare triples holds:

1. {𝑥 = 𝑦} 𝑧 ≔ 𝑥 − 𝑦 {𝑧 = 0}
2. {true} 𝑥 ≔ 100 {𝑥 = 100}
3. {true} 𝑥 ≔ 2 ∗ 𝑦 {𝑥 is even}
4. {𝑥 = 89} 𝑦 ≔ 𝑥 − 34 {𝑥 = 89}
5. {𝑥 = 3} 𝑥 ≔ 𝑥 + 1 {𝑥 = 4}
6. {0 ≤ 𝑥 < 100} 𝑥 ≔ 𝑥 + 1 {0 < 𝑥 ≤ 100}

2. For each of the following Hoare triples, find the strongest post-condition:
1. {0 ≤ 𝑥 < 100} 𝑥 ≔ 2𝑥 {?}
2. {0 ≤ 𝑥 ≤ 𝑦 < 100} 𝑧 ≔ 𝑦 − 𝑥 {?}
3. {0 ≤ 𝑥 < 𝑁} 𝑥 ≔ 𝑥 + 1 {?}

3. For each of the following Hoare triples, find the weakest pre-condition:
1. {?} 𝑏 ≔ (𝑦 < 10) {𝑏 → (𝑥 < 𝑦)}
2. {?} 𝑥, 𝑦 ≔ 2𝑥, 𝑥 + 𝑦 {0 ≤ 𝑥 ≤ 100𝑦 ≤ 𝑥}
3. {?} 𝑥 ≔ 2𝑦 {10 ≤ 𝑥 ≤ 𝑦}

26 / 41

Swap Example
Consider the following program that swaps the values of 𝑥 and 𝑦 using a temporary variable.

var tmp := x;
x := y;
y := tmp;

Let’s prove that it indeed swaps the values, by performing the backward reasoning on it. First, we need a
way to refer to the initial values of 𝑥 and 𝑦 in the post-condition. For this, we use logical variables that
stand for some values (initially, 𝑥 = 𝑋 and 𝑦 = 𝑌) in our proof, yet cannot be used in the program itself.

// { x == X, y == Y }
// { ? }
var tmp := x;
// { ? }
x := y;
// { ? }
y := tmp
// { y == Y, x == X }

27 / 41

Simultaneous Assignment
Dafny allows simultaneous assignment of multiple variables in a single statement.

Examples :

𝑥, 𝑦 ≔ 3, 10 sets 𝑥 to 3 and 𝑦 to 10
𝑥, 𝑦 = 𝑥 + 𝑦, 𝑥 − 𝑦 sets 𝑥 to the sum of 𝑥, and 𝑦 and 𝑦 to their difference

All right-hand sides are evaluated before any variables are assigned.

Note : The last example is different from the two statements x = x + y; y = x - y;

28 / 41

Weakest Pre-condition for Simultaneous Assignment

Definition 8 : The weakest pre-condition for a simultaneous assignment 𝑥1, 𝑥2 ≔ 𝐸1, 𝐸2 is
constructed by replacing each 𝑥1 with 𝐸1 and each 𝑥2 with 𝐸2 in post-condition 𝑄.

𝑄[𝑥1 ≔ 𝐸1, 𝑥2 ≔ 𝐸2] 𝑥1, 𝑥2 ≔ 𝐸1, 𝐸2 {𝑄}

Example : Going backward in the following “swap” program:

// { x == X, y == Y } -- initial state
// { y == Y, x == X } -- weakest pre-condition
x, y = y, x
// { x == Y, y == X } -- final "swapped" state

29 / 41

Weakest Pre-condition for Variable Introduction
Note : The statement var x := tmp; is actually two statements: var x; x := tmp.

What is true about 𝑥 in the post-condition, must have been true for all 𝑥 before the variable introduction.

{∀𝑥. 𝑄} var 𝑥 {𝑄}

Examples :
• {∀𝑥. 0 ≤ 𝑥} var x {0 ≤ 𝑥}
• {∀𝑥. 0 ≤ 𝑥 ⋅ 𝑥} var x {0 ≤ 𝑥 ⋅ 𝑥}

30 / 41

Strongest Post-condition for Assignment
Consider the Hoare triple

{𝑤 < 𝑥, 𝑥 < 𝑦} 𝑥 ≔ 100 {?}

Obviously, 𝑥 = 100 is a post-condition, however it is not the strongest.

Something more is implied by the pre-condition: there exists an 𝑛 such that (𝑤 < 𝑛) ∧ (𝑛 < 𝑦), which is
equivalent to 𝑤 + 1 < 𝑦.

In general:

{𝑃} 𝑥 ≔ 𝐸 {∃𝑛. 𝑃 [𝑥 ≔ 𝑛] ∧ 𝑥 = 𝐸[𝑥 ≔ 𝑛]}

31 / 41

Exercises
Replace the “?” in the following Hoare triples by computing strongest post-conditions.
1. {𝑦 = 10} 𝑥 ≔ 12 {?}
2. {98 ≤ 𝑦} 𝑥 ≔ 𝑥 + 1 {?}
3. {98 ≤ 𝑥} 𝑥 ≔ 𝑥 + 1 {?}
4. {98 ≤ 𝑦 < 𝑥} 𝑥 ≔ 3𝑦 + 𝑥 {?}

32 / 41

𝒲𝒫 and 𝒮𝒫
Let 𝑃 be a predicate on the pre-state of a program 𝑆, and let 𝑄 be a predicate on the post-state of 𝑆.

𝒲𝒫⟦ 𝑆, 𝑄 ⟧ denotes the weakest pre-condition of 𝑆 w.r.t. 𝑄.
• 𝒲𝒫⟦ var 𝑥, 𝑄 ⟧ = ∀𝑥. 𝑄
• 𝒲𝒫⟦ 𝑥 ≔ 𝐸, 𝑄 ⟧ = 𝑄[𝑥 ≔ 𝐸]
• 𝒲𝒫⟦ (𝑥1, 𝑥2 ≔ 𝐸1, 𝐸2), 𝑄 ⟧ = 𝑄[𝑥1 ≔ 𝐸1, 𝑥2 ≔ 𝐸2]

𝒮𝒫⟦ 𝑆, 𝑃 ⟧ denotes the strongest post-condition of 𝑆 w.r.t. 𝑃 .
• 𝒮𝒫⟦ var 𝑥, 𝑃 ⟧ = ∃𝑥. 𝑃
• 𝒮𝒫⟦ 𝑥 ≔ 𝐸, 𝑃 ⟧ = ∃𝑛. 𝑃 [𝑥 ≔ 𝑛] ∧ 𝑥 = 𝐸[𝑥 ≔ 𝑛]

Exercise : Compute the following pre- and post-conditions:

• 𝒲𝒫⟦ 𝑥 ≔ 𝑦, 𝑥 + 𝑦 ≤ 100 ⟧
• 𝒲𝒫⟦ 𝑥 ≔ −𝑥, 𝑥 + 𝑦 ≤ 100 ⟧
• 𝒲𝒫⟦ 𝑥 ≔ 𝑥 + 𝑦, 𝑥 + 𝑦 ≤ 100 ⟧
• 𝒲𝒫⟦ 𝑧 ≔ 𝑥 + 𝑦, 𝑥 + 𝑦 ≤ 100 ⟧
• 𝒲𝒫⟦ var 𝑥, 𝑥 ≤ 100 ⟧

• 𝒮𝒫⟦ 𝑥 ≔ 5, 𝑥 + 𝑦 ≤ 100 ⟧
• 𝒮𝒫⟦ 𝑥 ≔ 𝑥 + 1, 𝑥 + 𝑦 ≤ 100 ⟧
• 𝒮𝒫⟦ 𝑥 ≔ 2𝑦, 𝑥 + 𝑦 ≤ 100 ⟧
• 𝒮𝒫⟦ 𝑧 ≔ 𝑥 + 𝑦, 𝑥 + 𝑦 ≤ 100 ⟧
• 𝒮𝒫⟦ var 𝑥, 𝑥 ≤ 100 ⟧

33 / 41

Control Flow

Statement Program
Assignment 𝑥 ≔ 𝐸
Local variable var 𝑥
Composition 𝑆; 𝑇
Condition if 𝐵 then {𝑆} else {𝑇}
Assumption assume 𝑃
Assertion assert 𝑃
Method call 𝑟 ≔ 𝑀(𝐸)
Loop while 𝐵 do {𝑆}

34 / 41

Sequential Composition
𝑆; 𝑇

{𝑃} 𝑆 {𝑄} 𝑇 {𝑅}
{𝑃} 𝑆 {𝑄} and {𝑄} 𝑇 {𝑅}

Strongest post-condition:
• Let 𝑄 = 𝒮𝒫⟦ 𝑆, 𝑃 ⟧
• 𝒮𝒫⟦ (𝑆; 𝑇), 𝑃 ⟧ = 𝒮𝒫⟦ 𝑇 , 𝑄 ⟧ = 𝒮𝒫⟦ 𝑇 , 𝒮𝒫⟦ 𝑆, 𝑃 ⟧ ⟧

Weakest pre-condition:
• Let 𝑄 = 𝒲𝒫⟦ 𝑇 , 𝑅 ⟧
• 𝒲𝒫⟦ (𝑆; 𝑇), 𝑅 ⟧ = 𝒲𝒫⟦ 𝑆, 𝑄 ⟧ = 𝒲𝒫⟦ 𝑆, 𝒲𝒫⟦ 𝑇 , 𝑅 ⟧ ⟧

35 / 41

Conditional Control Flow

𝐵 ¬𝐵

{𝑃}

{𝑉 } {𝑊}

𝑆 𝑇

{𝑋} {𝑌 }

{𝑄}

{𝑃} if 𝐵 then {𝑆} else {𝑇} {𝑄}

1. (𝑃 ∧ 𝐵) → 𝑉
2. (𝑃 ∧ ¬𝐵) → 𝑊
3. {𝑉 } 𝑆 {𝑋}
4. {𝑊} 𝑇 {𝑌 }
5. 𝑋 → 𝑄
6. 𝑌 → 𝑄

36 / 41

Strongest Post-condition for Condition

𝐵 ¬𝐵

{𝑃}

{𝑃 ∧ 𝐵} {𝑃 ∧ ¬𝐵}

𝑆 𝑇

{𝑋} {𝑌 }

{𝑋 ∨ 𝑌 }

{𝑃} if 𝐵 then {𝑆} else {𝑇} {𝑄}

𝑉 = 𝑃 ∧ 𝐵
𝑊 = 𝑃 ∧ ¬𝐵

𝑋 = 𝒮𝒫⟦ 𝑆, 𝑃 ∧ 𝐵 ⟧
𝑌 = 𝒮𝒫⟦ 𝑇 , 𝑃 ∧ ¬𝐵 ⟧

𝒮𝒫⟦ if 𝐵 then {𝑆} else {𝑇}, 𝑃 ⟧ =
= 𝑋 ∨ 𝑌 =
= 𝒮𝒫⟦ 𝑆, 𝑃 ∧ 𝐵 ⟧ ∨ 𝒮𝒫⟦ 𝑇 , 𝑃 ∧ ¬𝐵 ⟧

37 / 41

Weakest Pre-condition for Condition

𝐵 ¬𝐵

{(𝐵 → 𝑉) ∧ (¬𝐵 → 𝑊)}

{𝑉 } {𝑊}

𝑆 𝑇

{𝑄} {𝑄}

{𝑄}

{𝑃} if 𝐵 then {𝑆} else {𝑇} {𝑄}

𝒲𝒫⟦ if 𝐵 then {𝑆} else {𝑇}, 𝑄 ⟧ =
= (𝐵 → 𝑉) ∧ (¬𝐵 → 𝑊) =
= (𝐵 → 𝒲𝒫⟦ 𝑆, 𝑄 ⟧) ∧ (¬𝐵 → 𝒲𝒫⟦ 𝑇 , 𝑄 ⟧)

𝑉 = 𝒲𝒫⟦ 𝑆, 𝑄 ⟧
𝑊 = 𝒲𝒫⟦ 𝑇 , 𝑄 ⟧

𝑋 = 𝑄
𝑌 = 𝑄

38 / 41

Example
// { (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
if x < 3 {
 // { x == 89 }
 // { x + 1 + 10 == 100 }
 x, y := x + 1, 10;
 // { x + y == 100 }
} else {
 // { x == 50 }
 // { x + x == 100 }
 y := x;
 // { x + y == 100 }
}
// { x + y == 100 }

39 / 41

TODO
…

40 / 41

Bibliography
[1] M. Leino and K. Rustan, “Accessible Software Verification with Dafny,” IEEE Software, vol. 34, no. 6, pp.

94–97, Nov. 2017, doi: 10.1109/MS.2017.4121212.

[2] C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,” Communications of the ACM, vol. 12,
no. 10, pp. 576–580, 1969, doi: 10.1145/363235.363259.

[3] R. W. Floyd, “Assigning Meanings to Programs,” Mathematical Aspects of Computer Science, vol. 19.
American Mathematical Society, pp. 19–32, 1967.

41 / 41

https://doi.org/10.1109/MS.2017.4121212
https://doi.org/10.1145/363235.363259

	Program Verification
	Motivation
	Program Correctness
	Design by Contract
	Formal Verification

	Dafny
	Introduction to Dafny
	Logic in Dafny
	Verifying the Imperative Procedure
	Program State
	Floyd Logic
	Exercise #1
	Exercise #2

	Floyd-Hoare Logic
	From Contracts to Floyd-Hoare Logic
	Hoare Triples
	Forward Reasoning
	Strongest Post-condition
	Backward Reasoning
	Weakest Pre-condition
	Weakest Pre-condition for Assignment
	Exercises
	Swap Example
	Simultaneous Assignment
	Weakest Pre-condition for Simultaneous Assignment
	Weakest Pre-condition for Variable Introduction
	Strongest Post-condition for Assignment
	Exercises
	W P and S P
	Control Flow
	Sequential Composition
	Conditional Control Flow
	Strongest Post-condition for Condition
	Weakest Pre-condition for Condition
	Example
	TODO
	Bibliography

