
Formal Methods in Software Engineering
DPLL — Spring 2025
Konstantin Chukharev

§1 Algorithms for SAT

Davis–Putnam Algorithm
The first algorithm for solving the SAT problem was proposed
by Martin Davis and Hilary Putnam in 1960 [1].

Satisfiability-preserving transformations:
• The 1-literal rule (unit propagation).
• The affirmative-negative rule (pure literal).
• The atomic formula elimination rule (resolution).

Martin Davis Hilary Putnam

The first two rules reduce the total number of literals in the formula. The third rule reduces the number of
variables in the formula. By repeatedly applying these rules, we can simplify the formula until it becomes
trivially satisfiable (formula without clauses) or unsatisfiable (formula containing an empty clause).

Hereinafter, we assume that the formulas are given in CNF form.

3 / 15

Unit Propagation Rule

Definition 1 (Unit clause) : A unit clause is a clause with a single literal.

Suppose (𝑝) is a unit clause. Recall that 𝑝 denotes the complement literal: 𝑝 = {¬𝑝 if 𝑝 is positive
𝑝 if 𝑝 is negative

Then, the unit propagation rule is defined as follows:
• Assign the value of 𝑝 to true.
• Remove all instances of 𝑝 from clauses in the formula (shortening the corresponding clauses).
• Remove all clauses containing 𝑝 (including the unit clause itself).

Example : Consider the formula (𝐴 ∨ 𝐵) ∧ (𝐴 ∨ ¬𝐵) ∧ (¬𝐴 ∨ 𝐵) ∧ (¬𝐴 ∨ ¬𝐵) ∧ (𝐴). The unit clause
(𝐴) is present in the formula. Applying the unit propagation rule, we remove all clauses containing 𝐴
(positive literal), and remove ¬𝐴 (negative literal) from the remaining clauses: (𝐴 ∨ 𝐵) ∧ (𝐴 ∨ ¬𝐵) ∧
(¬𝐴 ∨ 𝐵) ∧ (¬𝐴 ∨ 𝐵) ∧ (¬𝐴 ∨ ¬𝐵) ∧ (𝐴), which simplifies to (𝐵) ∧ (¬𝐵).

4 / 15

Pure Literal Rule

Definition 2 (Pure literal) : A literal 𝑝 is pure if it appears in the formula only positively or only
negatively.

The pure literal rule is defined as follows:
• Assign the value of 𝑝 to true.
• Remove all clauses containing a pure literal.

Example : Consider the formula (𝐴 ∨ 𝐵) ∧ (𝐴 ∨ 𝐶) ∧ (𝐵 ∨ 𝐶). The literal 𝐴 is pure, as it appears only
positively. Applying the pure literal rule, we assign 𝐴 = 1 and remove all clauses containing 𝐴, which
simplifies the formula to (𝐵 ∨ 𝐶).

5 / 15

Resolution Rule
1. Select a propositional variable 𝑝 that appears both positively and negatively in the formula.
2. Partition the relevant clauses:

• Let 𝑃 be the set of all clauses that contain 𝑝.
• Let 𝑁 be the set of all clauses that contain ¬𝑝.

3. Perform the resolution step:
• For each pair of clauses 𝐶𝑃 ∈ 𝑃 and 𝐶𝑁 ∈ 𝑁 , construct the resolvent by removing 𝑝 and ¬𝑝, then

merging the remaining literals:

𝐶𝑃 ⊗𝑝 𝐶𝑁 = (𝐶𝑃 \ {𝑝}) ∪ (𝐶𝑁 \ {¬𝑝})

Example : (𝑎 ∨ 𝑏 ∨ ¬𝑐) ⊗𝑏 (𝑎 ∨ ¬𝑏 ∨ 𝑑 ∨ ¬𝑒) = (𝑎 ∨ ¬𝑐 ∨ 𝑑 ∨ ¬𝑒)
4. Update the formula:

• Remove all clauses in 𝑃 and 𝑁 .
• Add the newly derived resolvents to the formula.

6 / 15

Davis–Putnam–Logemann–Loveland (DPLL) Algorithm
Introduced by Martin Davis, George Logemann, and Donald Loveland [2], the DPLL algorithm is a
refinement of the Davis–Putnam algorithm.

The DPLL algorithm is a complete, backtracking search algorithm for deciding the satisfiability of
propositional logic formulas in CNF, that is, for solving the CNF-SAT problem.

In DPLL, the resolution rule is replaced with a splitting rule.
1. Let Δ be the current set of clauses.
2. Choose a propositional variable 𝑝 occuring in the formula.
3. Recursively check the satisfiability of Δ ∪ {(𝑝)}:

• If satisfiable, return satisfiable.
• If unsatisfiable, recursively check the satisfiability of Δ ∪ {(¬𝑝)} and return that result.

The DPLL algorithm is a complete algorithm: it will eventually find a satisfying assignment iff one exists.

7 / 15

DPLL

Input: set of clauses 𝑆
Output: satisfiable or unsatisfiable

1 𝑆 ≔ propagate(𝑆)
2 if 𝑆 is empty then

return satisfiable
3 if 𝑆 contains the empty clause then

return unsatisfiable
4 𝐿 ≔ select_literal(𝑆)
5 if DPLL(𝑆 ∪ {𝐿}) = satisfiable then

return satisfiable
6 else

return DPLL(𝑆 ∪ {¬𝐿})
7 end

no

yes

yes no

SAT UNSAT

DPLL(𝑆)

Propagate

Empty?
𝑆 =? ∅

Conflict?
□ ∈

?
𝑆

SAT

UNSAT Select literal 𝐿

Recursive call
DPLL(𝑆 ∪ {𝐿})

Recursive call
DPLL(𝑆 ∪ {¬𝐿})

SAT/UNSAT

8 / 15

Conflict-Driven Clause Learning (CDCL)

no yes

yes

no

yes

no

Start

Propagate

Conflict?Empty?

SAT

Select literal
and assign

Level is 0?

UNSAT

Analyze
Learn

Backjump

9 / 15

§2 Advanced Topics

Abstract DPLL

Definition 3 : Abstract DPLL is a high-level framework for a general and simple abstract rule-based
formulation of the DPLL procedure. [3], [4]

DPLL procedure is being modelled by a transition system: a set of states and a transition relation.
• States are denoted by 𝑆.
• We write 𝑆 ⟹ 𝑆′ when the pair (𝑆, 𝑆′) is in the transition relation, meaning that 𝑆′ is reachable

from 𝑆 in one transition step.
• We denote by ⟹∗ the reflexive-transitive closure of ⟹.
• We write 𝑆 ⟹! 𝑆′ if 𝑆 ⟹∗ 𝑆′ and 𝑆′ is a final state, i.e., there is no 𝑆″ such that 𝑆′ ⟹ 𝑆″.
• A state is either fail or a pair 𝑀 ‖ 𝐹 , where 𝑀 is a model (a sequence of annotated literals) and 𝐹 is a

finite set of clauses.
• An empty sequence of literals is denoted by ∅.
• A literal can be annotated as decision literal, which is denoted by 𝑙𝑑.
• We write 𝐹, 𝐶 to denote the set 𝐹 ∪ {𝐶}.

11 / 15

DPLL
The basic DPLL system consists of the following transition rules:

• UnitPropagate:
𝑀 ‖ 𝐹, (𝐶 ∨ 𝑙) ⟹ 𝑀𝑙 ‖ 𝐹 , (𝐶 ∨ 𝑙) if {𝑀 ⊨ ¬𝐶

𝑙 is undefined in 𝑀

• PureLiteral:

𝑀 ‖ 𝐹 ⟹ 𝑀 ‖ 𝐹 if {
𝑙 occurs in some clause of 𝐹
¬𝑙 does not occur in any clause of 𝐹
𝑙 is undefined in 𝑀

• Decide:
𝑀 ‖ 𝐹, 𝐶 ⟹ 𝑀𝑙𝑑 ‖ 𝐹 , 𝐶 if {𝑙 or ¬𝑙 occurs in a clause of 𝐹

𝑙 is undefined in 𝑀

• Fail:
𝑀 ‖ 𝐹, 𝐶 ⟹ fail if {𝑀 ⊨ ¬𝐶

𝑀 contains no decision literals

• Backtrack:
𝑀𝑙𝑑𝑁 ‖ 𝐹, 𝐶 ⟹ 𝑀¬𝑙 ‖ 𝐹 , 𝐶 if {𝑀𝑙𝑑𝑁 ⊨ ¬𝐶

𝑁 contains no decision literals

12 / 15

CDCL
Extended rules:

• Learn:
𝑀 ‖ 𝐹 ⟹ 𝑀 ‖ 𝐹, 𝐶 if {all atoms of 𝐶 occur in 𝐹

𝐹⊨𝐶

• Backjump:

𝑀𝑙𝑑𝑁 ‖ 𝐹, 𝐶 ⟹ 𝑀𝑙′ ‖ 𝐹 , 𝐶 if

{{
{{
{{
{𝑀𝑙𝑑𝑁 ⊨ ¬𝐶

there is asome clause 𝐶′∨𝑙′ such that:
𝐹,𝐶 ⊨ 𝐶′∨𝑙′
𝑙′ is undefined in 𝑀
𝑙′∨¬𝑙′ occurs in 𝐹 or in 𝑀𝑙𝑑𝑁

• Forget:
𝑀 ‖ 𝐹, 𝐶 ⟹ 𝑀 ‖ 𝐹 if {𝐹 ⊨ 𝐶

• Restart:
𝑀 ‖ 𝐹 ⟹ ∅ ‖ 𝐹

TODO: discuss

13 / 15

TODO
Brief description of “algorithms for SAT” problem
Truth tables algorithm
2-SAT
Horn-SAT
CDCL
Abstract DPLL

14 / 15

Bibliography
[1] M. Davis and H. Putnam, “A computing procedure for quantification theory,” Journal of the ACM, vol.

7, no. 3, pp. 201–215, 1960, doi: 10.1145/321033.321034.

[2] M. Davis, G. Logemann, and D. Loveland, “A machine program for theorem-proving,” Communications
of the ACM, vol. 5, no. 7, pp. 394–397, 1962, doi: 10.1145/368273.368557.

[3] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Abstract DPLL and Abstract DPLL Modulo Theories,”
Logic for Programming, Artificial Intelligence, and Reasoning, vol. 3452. pp. 36–50, 2005. doi:
10.1007/978-3-540-32275-7_3.

[4] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT Modulo Theories: From an abstract
Davis-Putnam-Logemann-Loveland procedure to DPLL(T),” Journal of the ACM, vol. 53, no. 6, pp. 937–
977, 2006, doi: 10.1145/1217856.1217859.

15 / 15

https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/368273.368557
https://doi.org/10.1007/978-3-540-32275-7_3
https://doi.org/10.1145/1217856.1217859

	Algorithms for SAT
	Davis–Putnam Algorithm
	Unit Propagation Rule
	Pure Literal Rule
	Resolution Rule
	Davis–Putnam–Logemann–Loveland (DPLL) Algorithm
	DPLL
	Conflict-Driven Clause Learning (CDCL)

	Advanced Topics
	Abstract DPLL
	DPLL
	CDCL
	TODO
	Bibliography

