
Formal Methods in Software Engineering
First-Order Logic — Spring 2025
Konstantin Chukharev

§1 Introduction to FOL

Motivation

Propositional logic (PL) is not powerful enough for many applications.

• PL cannot reason about natural numbers directly.
• PL cannor reason about infinite domains.
• PL cannot express abstract properties.
• PL cannot respresent the internal structure of propositions.
• PL lacks quantifiers for generalization.

First-order logic (FOL) extends propositional logic by adding variables, predicates, functions, and quantifiers,
providing a structured way to reason about objects, their properties, and relationships.

Unlike propositional logic, which is limited to fixed truth values for statements, FOL allows complex
expressions like “All humans are mortal” (∀𝑥. Human(𝑥) → Mortal(𝑥)) or “There exists a solution to the
problem” (∃𝑥. Solution(𝑥)).

3 / 58

What is First-Order Logic?
Similar to PL, first-order logic is a formal system with a syntax and semantics.

First-order logic is an umbrella term for different first-order languages.

Syntax of a logic consists of symbols and rules for combining them into well-formed formulas (WFFs).

Symbols of a first-order language are divided into logical symbols and non-logical parameters.

Logical symbols:
• Parantheses: (,)
• Logical connectives: ¬, ∧, ∨, →, ↔
• Variables: 𝑥, 𝑦, 𝑧, …
• Quantifiers: ∀ and ∃

Parameters:
• Equiality: =
• Constants: e.g. ⊥, 0, ∅, …
• Predicates: e.g. 𝑃(𝑥), 𝑄(𝑥, 𝑦), 𝑥 > 𝑦, 𝐴 ⊂ 𝐵, a ≺ ab
• Functions: e.g. 𝑓(𝑥), 𝑔(𝑥, 𝑦), 𝑥 + 𝑦, 𝑥 ⊕ 𝑦

Note : For connectives, just ∧ and ¬ are enough. The others can be expressed in terms of them.

Note : For quantifiers, just ∀ is enough, since ∃𝑥. 𝜑 can be expressed as ¬∀𝑥. ¬𝜑.

4 / 58

Predicates and Functions
Predicates are used to express properties or relations among objects.

Functions are similar to predicates but return a value, not necessarily a truth value.

Each predicate and function symbol has a fixed arity (number of arguments).
• Equality is a special predicate with arity 2.
• Constants can be seen as functions with arity 0.

5 / 58

First-Order Language
First-order language is specified by its parameters.

Propositional logic:
• Equiality: no
• Constants: none
• Predicates: 𝐴1, 𝐴2, …
• Functions: none

Set theory:
• Equiality: yes
• Constants: ∅
• Predicates: ∈
• Functions: none

Number theory:
• Equiality: yes
• Constants: 0
• Predicates: <
• Functions: 𝑆 (successor), +, ×, exp

6 / 58

§2 Formalizing FOL

Syntax

Definition 1 (Signature) : A vocabulary (also known as signature) of a language is a collection of
symbols used to construct sentences in that language. A signature Σ = ⟨𝒱, ℱ, ℛ⟩ consists of:
• A set of variables 𝒱, e.g., 𝑥, 𝑦, 𝑧, …
• A set of function symbols ℱ, e.g., 𝑆, +, ×, …
• A set of relation symbols ℛ, e.g., =, <, ∈, …

Each function and relation symbol has an associated arity (number of arguments).
• Functions of arity 0 are called constants.
• Relations of arity 1 are called predicates.

8 / 58

Statements

Definition 2 (Term): A first-order term over Σ is defined inductively:
• Each variable 𝑥 ∈ 𝒱 is a term.
• If 𝑡1, …, 𝑡𝑛 are terms and 𝑓 is an 𝑛-ary function symbol from ℱ, then 𝑓(𝑡1, …, 𝑡𝑛) is a term.

Definition 3 (Atom): A first-order atom over Σ is defined as follows:
• If 𝑡1, …, 𝑡𝑛 are terms and 𝑅 is a relation symbol from ℛ, then 𝑅(𝑡1, …, 𝑡𝑛) is an atom.

Definition 4 (Formula) : A first-order formula over Σ is defined inductively:
• Each atom is a formula.
• If 𝛼 and 𝛽 are formulas, then ¬𝛼, (𝛼 ∧ 𝛽), (𝛼 ∨ 𝛽), (𝛼 → 𝛽), and (𝛼 ↔ 𝛽) are formulas.
• If 𝛼 is a formula and 𝑥 ∈ 𝒱 is a variable, then ∀𝑥. 𝛼 and ∃𝑥. 𝛼 are formulas.

9 / 58

Free and Bound Variables
• A variable 𝑥 is bound in ∀𝑥. 𝛼 and ∃𝑥. 𝛼.
• A variable 𝑥 is free in 𝛼 if it is not bound in 𝛼.
• A formula is closed (also called a sentence) if it contains no free variables.

10 / 58

Grammar
⟨Form⟩ ⩴ ⟨Atom⟩ | ¬⟨Form⟩ | ⟨Form⟩ ∧ ⟨Form⟩ | … | ('∀' | '∃')𝒱. ⟨Form⟩
⟨Atom⟩ ⩴ ℛ '(' ⟨Term⟩∗ ')'
⟨Term⟩ ⩴ 𝒱 | ⟨Function⟩ '(' ⟨Term⟩∗ ')'

11 / 58

Semantics

Definition 5 (Model) : A possible world (also known as model, or structure, or interpretation) is a
mathematical object that gives meaning to the symbols of a language.

A first-order model ℳ = ⟨𝒰, 𝜈, ℐ⟩ for Σ = ⟨𝒱, ℱ, ℛ⟩ consists of:
• A domain 𝒰 is a non-empty set of objects (universe of disclosure).
• A variable valuation 𝜈 : 𝒱 ⟶ 𝒰 assigning to each variable 𝑥 ∈ 𝒱 an element of 𝒰.
• An interpretation function ℐ for the function and relation symbols in Σ.

‣ An interpretation of an 𝑛-ary function symbol 𝑓 ∈ ℱ is an 𝑛-ary total function ℐ(𝑓) : 𝒰𝑛 ⟶ 𝒰.
‣ An interpretation of an 𝑛-ary relation symbol 𝑅 ∈ ℛ is an 𝑛-ary relation ℐ(𝑅) ⊆ 𝒰𝑛.

Definition 6 : The term valuation induced by a model ℳ = ⟨𝒰, 𝜈, ℐ⟩ is defined as follows:
• 𝜈(𝑡) = 𝜈(𝑥) if 𝑡 is a variable 𝑥.
• 𝜈(𝑡) = (ℐ(𝑓))(𝜈(𝑡1), …, 𝜈(𝑡𝑛)) if 𝑡 is a term 𝑓(𝑡1, …, 𝑡𝑛).

12 / 58

Semantics [2]

Definition 7 (Semantics of FOL) : The validation relation ⊨ between a model ℳ and a first-order
formula 𝜑 is defined inductively:
• ℳ ⊨ 𝑅(𝑡1, …, 𝑡𝑛) iff ℐ(𝑅) contains (𝜈(𝑡1), …, 𝜈(𝑡𝑛)).
• ℳ ⊭ ⊥.
• ℳ ⊨ ¬𝜑 iff ℳ ⊭ 𝜑.
• ℳ ⊨ (𝛼 ∧ 𝛽) iff ℳ ⊨ 𝛼 and ℳ ⊨ 𝛽. Similar for ∨, →, and ↔.
• ℳ ⊨ ∃𝑥. 𝜑 iff ℳ′ ⊨ 𝜑 for some ℳ′ = ⟨𝒰, ℐ, 𝜈′⟩ with 𝜈′(𝑦) = 𝜈(𝑦) for all 𝑦 ≠ 𝑥.
• ℳ ⊨ ∀𝑥. 𝜑 iff ℳ′ ⊨ 𝜑 for all ℳ′ which differ from ℳ at most in the valuation of 𝑥.

13 / 58

§3 Many-Sorted FOL

Syntax
The syntax of a logic consists of symbols and rules for combining them.

The symbols of a first-order language include:
1. Logical symbols: (,), ¬, ∧, ∨, →, ↔, ∀, ∃
2. Infinite set of variables: 𝑥, 𝑦, 𝑧, …
3. Signature Σ = ⟨Σ𝑆, Σ𝐹 ⟩, where:

• Σ𝑆 is a set of sorts (also called types), e.g. Bool, Int, Real, Set.
• Σ𝐹 is a set of function symbols, e.g. =, +, <, …

15 / 58

Signatures

Definition 8 : Signature Σ = ⟨Σ𝑆, Σ𝐹 ⟩ consists of:
• Σ𝑆 is a set of sorts (also called types), e.g. Bool, Int, Real, Set
• Σ𝐹 is a set of function symbols, e.g. =, +, <

Definition 9 : Each function symbol 𝑓 ∈ Σ𝐹 is associated with an arity 𝑛 (number of arguments) and a
rank, (𝑛 + 1)-tuple of sorts: rank(𝑓) = ⟨𝜎1, 𝜎2, …, 𝜎𝑛+1⟩. Intuitively, 𝑓 denotes a function that takes 𝑛
values of sorts 𝜎1, …, 𝜎𝑛 and returns an output of sort 𝜎𝑛+1.
• Functions of arity 0 are called constants, which are said to have sort 𝜎 if rank(𝑓) = ⟨𝜎⟩.
• Functions that return sort Bool are called predicates.

For every signature Σ = ⟨Σ𝑆, Σ𝐹 ⟩, we assume that:
• Σ𝑆 includes a distinguished sort Bool.
• Σ𝐹 contains distinguished constants ⊤ and ⊥ of sort Bool, and distinguished predicate symbol =. with

rank(=.) = ⟨𝜎, 𝜎, Bool⟩ for every sort 𝜎 ∈ Σ𝑆 .

16 / 58

Equality
TODO: axioms of equality
• reflexivity
• substitution for functions
• substitution for formulas

17 / 58

First-Order Languages
A first-order language is defined w.r.t. a signature Σ = ⟨Σ𝑆, Σ𝐹 ⟩.

Number Theory:
• Σ𝑆 = {Nat} ∪ {Bool}
• Σ𝐹 = {0, 𝑆, <, +, ×} ∪ {⊤, ⊥, =. Bool, =

.
Nat}

‣ rank(0) = ⟨Nat⟩
‣ rank(𝑆) = ⟨Nat, Nat⟩
‣ rank(<) = ⟨Nat, Nat, Bool⟩
‣ rank(+) = rank(×) = ⟨Nat, Nat, Nat⟩

Set Theory:
• Σ𝑆 = {Set} ∪ {Bool}
• Σ𝐹 = {∅, ∈, ∪, ∩} ∪ {⊤, ⊥, =. Bool, =

.
Set}

‣ rank(∅) = ⟨Set⟩
‣ rank(∈) = ⟨Set, Set, Bool⟩
‣ rank(∪) = rank(∩) = ⟨Set, Set, Set⟩

Propositional Logic:
• Σ𝑆 = {Bool}
• Σ𝐹 = {¬, ∧, ∨, …, 𝑝1, 𝑝2, …} ∪ {⊤, ⊥, =. Bool}

‣ rank(𝑝𝑖) = ⟨Bool⟩
‣ rank(¬) = ⟨Bool, Bool⟩
‣ rank(∧) = rank(∨) = ⟨Bool, Bool, Bool⟩

Arrays Theory:
• Σ𝑆 = {Array⟨X,Y⟩} ∪ {Bool}

‣ X is a sort of indices.
‣ Y is a sort of values.

• Σ𝐹 = {read, write} ∪ {⊤, ⊥, =. Bool, =
.
Array}

‣ rank(read) = ⟨Array⟨X,Y⟩, X, Y⟩
‣ rank(write) = ⟨Array⟨X,Y⟩, X, Y, Array⟨X,Y⟩⟩

18 / 58

Expressions

Definition 10 : An expression is a finite sequence of symbols.

Examples:
• ∀𝑥1((< 0 𝑥1) → ¬∀𝑥2(< 𝑥1 𝑥2))
• 𝑥1 < ∀𝑥2))
• 𝑥1 < 𝑥2 → ∀𝑥 : Nat. 𝑥 > 0

Note : Most expressions are not well-formed.

19 / 58

Terms
A term is a well-formed S-expression built from function symbols, variables, and parentheses.

Definition 11 (Term): Let ℬ be the set of all variables and all constant symbols in some signature Σ.

For each function symbol 𝑓 in Σ𝐹 of arity 𝑛, define term-building operation 𝒯𝑓 :

𝒯𝑓(𝜀1, …, 𝜀𝑛) ≔ (𝑓 𝜀1 ⋯ 𝜀1)

Well-formed terms are expressions generated from ℬ by 𝒯 = {𝒯𝑓 | 𝑓 ∈ Σ𝐹 }.

Examples:

• (+ 𝑥2 (𝑆 0)) ✓
• (𝑆 (𝑆 (𝑆 (𝑆 0)))) ✓
• (𝑆 (0 0)) ✗

• (𝑥2 + 0) ✗
• (𝑆 0 0) ✗
• (𝑆 (< 0 0)) ✓

• (+ 𝑥2 ⊥) ✓
• (𝑆 ⊥) ✓
• (=. 0 ⊥) ✓

• (read 𝑎) ✗
• (read 𝑎 𝑖) ✓
• (read (write 𝑎 𝑖 𝑥) 𝑗) ✓

20 / 58

Well-sortedness
Note : Not all well-formed terms are are meaningful. For this, we need to take into account sorts.

Definition 12 : Sort system is a proof system over sequents of the form Γ ⊢ 𝑡 : 𝜎.
• Γ = 𝑥1 : 𝜎1, …, 𝑥𝑛 : 𝜎𝑛 is a sort context, a set of sorted variables.
• 𝑡 is a well-formed term.
• 𝜎 is a sort from Σ𝑆 .

𝑥 : 𝜎 ∈ ΓVar
Γ ⊢ 𝑥 : 𝜎

𝑐 ∈ Σ𝐹 rank(𝑐) = ⟨𝜎⟩Const
Γ ⊢ 𝑐 : 𝜎

𝑓 ∈ Σ𝐹 rank(𝑓) = ⟨𝜎1, …, 𝜎𝑛, 𝜎⟩ Γ ⊢ 𝑡1 : 𝜎1 ⋯ Γ ⊢ 𝑡𝑛 : 𝜎𝑛Fun
Γ ⊢ (𝑓 𝑡1 ⋯ 𝑡𝑛) : 𝜎

Definition 13 (Σ-term): A term 𝑡 is well-sorted w.r.t. Σ and has sort 𝜎 in a sort context Γ if Γ ⊢ 𝑡 : 𝜎 is
derivable in the sort system. Term 𝑡 is called Σ-term.

21 / 58

Examples of Well-sorted Terms
Let Σ𝑆 = {Nat} ∪ {Bool} and Σ𝐹 = {0, 𝑆, <, +, ×, =. Nat} ∪ {⊤, ⊥, =. Bool}.
• rank(0) = ⟨Nat⟩
• rank(𝑆) = ⟨Nat, Nat⟩
• rank(<) = rank(=. Nat) = ⟨Nat, Nat, Bool⟩
• rank(+) = rank(×) = ⟨Nat, Nat, Nat⟩

Are these well-formed terms also well-sorted in the context Γ = {𝑥1 : Bool, 𝑥2 : Nat, 𝑥3 : Nat}?
1. (+ 0 𝑥2) ✓
2. (+ (+ 0 𝑥1) 𝑥2) ✗
3. (𝑆 (+ 0 𝑥5)) ✓
4. (< (𝑆 𝑥3) (+ (𝑆 0) 𝑥1)) ✓
5. (=. Nat (𝑆 𝑥3) (+ (𝑆 0) 𝑥1)) ✓

22 / 58

Formulas

Definition 14 (Σ-atom): Given a signature Σ, an atomic Σ-formula, or simply atom, is a Σ-term of sort
Bool under some sort context Γ.

Definition 15 (Formula) : Well-formed formulas are expressions generated from atoms by the formula-
building operations, denoted ℱ = {ℱ∨, ℱ∧, ℱ¬, ℱ→, ℱ↔, ℰ𝑥,𝜎, 𝒜𝑥,𝜎}.
• ℱ¬(𝛼) ≔ (¬𝛼)
• ℱ∧(𝛼, 𝛽) ≔ (𝛼 ∧ 𝛽), similar for ∨, →, and ↔
• ℰ𝑥,𝜎(𝛼) ≔ (∃𝑥 : 𝜎. 𝛼) for each variable 𝑥 and sort 𝜎 in Σ𝑆

• 𝒜𝑥,𝜎(𝛼) ≔ (∀𝑥 : 𝜎. 𝛼) for each variable 𝑥 and sort 𝜎 in Σ𝑆

23 / 58

Examples of Formulas
Let Σ𝑆 = {Nat}, Σ𝐹 = {0, 𝑆, <, +, ×, =. Nat}, and let 𝑥𝑖 be variables.

Which of the following formulas are well-formed?
1. (=. Nat 0 (𝑆 0)) ✓
2. (< (𝑆 𝑥3) (+ (𝑆 0) 𝑥1)) ✓
3. (=. Nat (+ 𝑥1 0) 𝑥2) ✓
4. (=. Nat (+ 𝑥1 0) 𝑥2) → ⊥ ✓
5. (+ 0 𝑥3) ∧ (< 0 (𝑆 0)) ✗
6. ∀𝑥3 : Nat. (+ (+ 0 𝑥3) 𝑥2) ✗
7. ∀𝑥3 : Bool. (=. Nat (+ 0 𝑥3) 𝑥2) ✓ (Note: not well-sorted)
8. ¬∃𝑥0 : Nat. (< 0 𝑥0 (𝑆 0)) ✗

24 / 58

Well-sorted Formulas
We extend the sort system for terms with rules for the logical connectives and quantifiers.

𝑐 ∈ {⊤, ⊥}Bconst
Γ ⊢ 𝑐 : Bool

Γ ⊢ 𝛼 : BoolNot
Γ ⊢ (¬𝛼) : Bool

Γ ⊢ 𝛼 : Bool Γ ⊢ 𝛽 : Bool ∗ ∈ {∧, ∨, →, ↔}Conn
Γ ⊢ (𝛼 ∗ 𝛽) : Bool

Γ[𝑥 : 𝜎] ⊢ 𝛼 : Bool 𝜎 ∈ Σ𝑆 𝑄 ∈ {∀, ∃}Quant
Γ ⊢ (𝑄 𝑥 : 𝜎. 𝛼) : Bool

Here, Γ[𝑥 : 𝜎] = Γ ∪ {𝑥 : 𝜎}.

Definition 16 (Σ-formula) : A formula 𝜑 is a well-sorted w.r.t. Σ in a sort context Γ if Γ ⊢ 𝜑 : Bool is
derivable in the extended sort system. Formula 𝜑 is called Σ-formula.

25 / 58

Free and Bound Variables
A variable 𝑥 may occur free or bound in a Σ-formula.

Example : In ∀𝑥. 𝐴(𝑥, 𝑦), the variable 𝑥 is said to be bound and 𝑦 is free.

Definition 17 (Free and bound variables) : Recursive definition of free variables in a Σ-formula:
• 𝑥 occurs free in a Σ-atom (𝐴 𝑡1 ⋯ 𝑡𝑛) if some 𝑡𝑖 contains 𝑥.
• 𝑥 occurs free in ¬𝐴 if 𝑥 occurs free in 𝐴.
• 𝑥 occurs free in 𝐴 ∗ 𝐵 if 𝑥 occurs free in 𝐴 or in 𝐵.
• 𝑥 occurs free in 𝑄 𝑦 : 𝜎. 𝐴 if 𝑥 occurs free in 𝐴 and 𝑥 is not 𝑦.

If 𝛼 contains 𝑄 𝑥, then 𝑥 is said to be bound in 𝛼.

Note : A variable can be simultaneously free and bound in a formula. For example, 𝑥 → ∀𝑥. 𝑃(𝑥).

Definition 18 (Sentence) : A formula 𝛼 is closed, or a sentence, if it contains no free variables.

26 / 58

Free and Bound Variables [2]

Definition 19 : The set ℱ𝒱 of free variables of a Σ-formula 𝛼 is defined as follows:

ℱ𝒱(𝛼) ≔

{{
{{
{
{{
{{{𝑥 | 𝑥 is a var in 𝛼} if 𝛼 is atomic

ℱ𝒱(𝛽) if 𝛼 ≡ ¬𝛽
ℱ𝒱(𝛽) ∪ ℱ𝒱(𝛾) if 𝛼 ≡ (𝛼 ∗ 𝛽) with ∗ ∈ {∧, ∨, →, ↔}
ℱ𝒱(𝛽) \ {𝑣} if 𝛼 ≡ 𝑄 𝑣 : 𝜎. 𝛽 with 𝑄 ∈ {∀, ∃}

Example : Let 𝑥, 𝑦, and 𝑧 be variables.
• ℱ𝒱(𝑥) = {𝑥} (if 𝑥 has sort Bool)
• ℱ𝒱(𝑥 < 𝑆(0) + 𝑦) = {𝑥, 𝑦}
• ℱ𝒱((𝑥 < 𝑆(0) + 𝑦) ∧ (𝑥 =. 𝑧)) = ℱ𝒱(𝑥 < 𝑆(0) + 𝑦) ∪ ℱ𝒱(𝑥 =. 𝑧) = {𝑥, 𝑦} ∪ {𝑥, 𝑧} = {𝑥, 𝑧, 𝑦}
• ℱ𝒱(∀𝑥 : Nat. 𝑥 < 𝑆(0) + 𝑦) = ℱ𝒱(𝑥 < 𝑆(0) + 𝑦) \ {𝑥} = {𝑥, 𝑦} \ {𝑥} = {𝑦}

27 / 58

Scope
• TODO: scope of variables
• TODO: free/bound variable
• TODO: open/closed formula
• TODO: universal closure
• TODO: existential closure

28 / 58

FOL Semantics
Recall: The syntax of a first-order language is defined w.r.t. a signature Σ = ⟨Σ𝑆, Σ𝐹 ⟩, where:
• Σ𝑆 is a set of sorts.
• Σ𝐹 is a set of function symbols.

In PL, the truth of a formula depends on the meaning of its variables.

In FOL, the truth of a Σ-formula depends on:
1. The meaning of each sort 𝜎 ∈ Σ𝑆 in the formula.
2. The meaning of each function symbol 𝑓 ∈ Σ𝐹 in the formula.
3. The meaning of each free variable 𝑥 in the formula.

29 / 58

Semantics
Let 𝛼 be a Σ-formula and let Γ be a sort context that includes all free variables of 𝛼.

The truth of 𝛼 is determined by interpretations ℐ of Σ and Γ consisting of:
• An interpretation 𝜎ℐ of each 𝜎 ∈ Σ𝑆 , as a non-empty set, the domain of 𝜎.
• An interpretation 𝑓ℐ of each 𝑓 ∈ Σ𝐹 of rank ⟨𝜎1, …, 𝜎𝑛, 𝜎𝑛+1⟩, as an 𝑛-ary total function

from 𝜎ℐ
1 × ⋯ × 𝜎ℐ

𝑛 to 𝜎ℐ
𝑛+1.

• An interpretation 𝑥ℐ of each 𝑥 : 𝜎 ∈ Γ, as an element of 𝜎ℐ.

Note : We consider only interpretations ℐ such that
• Boolℐ = {true, false}, ⊥ℐ = false, ⊤ℐ = true,
• for all 𝜎 ∈ Σ𝑆 , =. ℐ

𝜎 maps its two arguments to true iff they are identical.

30 / 58

Semantics: Example
Consider a signature Σ = ⟨Σ𝑆, Σ𝐹 ⟩ for a fragment of a set theory with non-set elements (ur-elements):
• Σ𝑆 = {Elem, Set},
• Σ𝐹 = {∅, 𝜀} with rank(∅) = ⟨Set⟩, rank(𝜀) = ⟨Elem, Set, Bool⟩,
• Γ = {𝑒𝑖 : Elem | 𝑖 ≥ 0} ∪ {𝑠𝑖 : Set | 𝑖 ≥ 0}

A possible interpretation ℐ of Σ and Γ:
• Elemℐ = ℕ, the natural numbers.
• Setℐ = 2ℕ, all sets of natural numbers.
• ∅ℐ = ∅, the empty set.
• For all 𝑛 ∈ ℕ and 𝑆 ⊆ ℕ, 𝜀ℐ(𝑛, 𝑆) ↔ 𝑛 ∈ 𝑆.
• For 𝑖 ≥ 0, 𝑒ℐ

𝑖 = 𝑖 and 𝑠ℐ
𝑖 = [0; 𝑖] = {0, 1, …, 𝑖}.

Another interpretation ℐ of Σ and Γ:
• Elemℐ = Setℐ = ℕ.
• ∅ℐ = 0.
• For all 𝑚, 𝑛 ∈ ℕ, 𝜀ℐ(𝑚, 𝑛) ↔ 𝑚 | 𝑛.
• For 𝑖 ≥ 0, 𝑒ℐ

𝑖 = 𝑖 and 𝑠ℐ
𝑖 = 2.

There is a infinity of interpretations of Σ, Γ.

31 / 58

Term and Formula Semantics
First, extend ℐ to an interpretation ℐ for well-sorted Σ-terms by structural induction:

𝑡ℐ = {
𝑡ℐ if 𝑡 is a constant or a variable
𝑓ℐ(𝑡ℐ1 , …, 𝑡ℐ𝑛) if 𝑡 is a term (𝑓 𝑡1 … 𝑡𝑛)

Example : Let Σ𝑆 = {Person}, Σ𝐹 = {pa, ma, sp}, Γ = {𝑥 : Person, 𝑦 : Person},
rank(pa) = rank(ma) = ⟨Person, Person⟩, rank(sp) = ⟨Person, Person, Bool⟩.

Let ℐ be an interpretation of Σ and Γ such that:
• maℐ = {Jim ↦ Jill, Joe ↦ Jen, …}
• paℐ = {Jim ↦ Joe, Jill ↦ Jay, …}
• spℐ = {(Jill, Joe) ↦ true, (Joe, Jill) ↦ true, (Jill, Jill) ↦ false, …}
• 𝑥ℐ = Jim and 𝑦ℐ = Joe

Then:
• (pa (ma 𝑥))ℐ = paℐ((ma 𝑥)ℐ) = paℐ(maℐ(𝑥ℐ)) = paℐ(𝑥ℐ)

= paℐ(maℐ(Jim)) = paℐ(Jill) = Jay

32 / 58

Term and Formula Semantics [2]
• (sp (ma 𝑥) 𝑦)ℐ = spℐ((ma 𝑥)ℐ, 𝑦ℐ) = spℐ(maℐ(𝑥ℐ), 𝑦ℐ) = spℐ(maℐ(𝑥ℐ), 𝑦ℐ)

= spℐ(maℐ(Jim), Joe) = spℐ(Jill, Joe) = true

Further extend ℐ to well-sorted non-atomic Σ-formulas by structural induction:
• (¬𝛼)ℐ = true iff 𝛼ℐ = false
• (𝛼 ∧ 𝛽)ℐ = true iff 𝛼ℐ = true and 𝛽ℐ = true
• (𝛼 ∨ 𝛽)ℐ = true iff 𝛼ℐ = true or 𝛽ℐ = true
• (𝛼 → 𝛽)ℐ = true iff 𝛼ℐ = false or 𝛽ℐ = true
• (𝛼 ↔ 𝛽)ℐ = true iff 𝛼ℐ = 𝛽ℐ

• (∃𝑥 : 𝜎. 𝛼)ℐ = true iff 𝛼ℐ[𝑥↦𝑐] = true for some 𝑐 ∈ 𝜎ℐ

• (∀𝑥 : 𝜎. 𝛼)ℐ = true iff 𝛼ℐ[𝑥↦𝑐] = true for all 𝑐 ∈ 𝜎ℐ

Here, ℐ[𝑥 ↦ 𝑐] denotes the interpretation that maps 𝑥 to 𝑐 and is otherwise identical to ℐ.

33 / 58

Satisfiability, Entailment, Validity
We write ℐ ⊨ 𝛼 to denote “ℐ satisfies 𝛼” and mean 𝛼ℐ = true.

We write ℐ ⊭ 𝛼 to denote “ℐ falsifies 𝛼” and mean 𝛼ℐ = false.

Let Φ be a set of Σ-formulas. We write ℐ ⊨ Φ to mean that ℐ ⊨ 𝛼 for every 𝛼 ∈ Φ.

If Φ is a set of Σ-formulas and 𝛼 is a Σ-formula, then Φ entails or logically implies 𝛼, denoted Φ ⊨ 𝛼, if
ℐ ⊨ 𝛼 for every interpretation ℐ of Σ such that ℐ ⊨ Φ.

We write 𝛼 ⊨ 𝛽 as an abbreviation for {𝛼} ⊨ 𝛽.

𝛼 and 𝛽 are logically equivalent, denoted 𝛼 ≡ 𝛽, iff 𝛼 ⊨ 𝛽 and 𝛽 ⊨ 𝛼.

A Σ-formula 𝛼 is valid, denoted ⊨ 𝛼, if ∅ ⊨ 𝛼 iff ℐ ⊨ 𝛼 for every interpretation ℐ of Σ.

34 / 58

Satisfiability, Entailment, Validity [2]
Example : Let Σ𝑆 = {A}, Σ𝐹 = {𝑝, 𝑞}, rank(𝑝) = ⟨A, Bool⟩, rank(𝑞) = ⟨A, A, Bool⟩, and all variables have
sort A. Do the following entailments hold?
1. ∀𝑥. 𝑝(𝑥) ⊨ 𝑝(𝑦) ✓
2. 𝑝(𝑥) ⊨ ∀𝑥. 𝑝(𝑥) ✗
3. ∀𝑥. 𝑝(𝑥) ⊨ ∃𝑦. 𝑝(𝑦) ✓
4. ∃𝑦 ∀𝑥. 𝑞(𝑥, 𝑦) ⊨ ∀𝑥 ∃𝑦. 𝑞(𝑥, 𝑦) ✓
5. ∀𝑥 ∃𝑦. 𝑞(𝑥, 𝑦) ⊨ ∃𝑦 ∀𝑥. 𝑞(𝑥, 𝑦) ✗
6. ⊨ ∃𝑥. (𝑝(𝑥) → ∀𝑦. 𝑝(𝑦)) ✓

35 / 58

Exercise
Let 𝛼 be a Σ-formula and let Γ be a sort context that includes all free variables of 𝛼.

Consider the signature where Σ𝑆 = {𝜎}, Σ𝐹 = {𝑄, =. 𝜎}, Γ = {𝑥 : 𝜎, 𝑦 : 𝜎}, rank(𝑄) = ⟨𝜎, 𝜎, Bool⟩.

For each of the following Σ-formulas, describe an interpretation that satisfies it.
1. ∀𝑥 : 𝜎. ∀𝑦 : 𝜎. 𝑥 =. 𝑦
2. ∀𝑥 : 𝜎. ∀𝑦 : 𝜎. 𝑄(𝑥, 𝑦)
3. ∀𝑥 : 𝜎. ∃𝑦 : 𝜎. 𝑄(𝑥, 𝑦)

36 / 58

From English to FOL
1. There is a natural number that is smaller than any other natural number.

∃𝑥 : Nat. ∀𝑦 : Nat. (𝑥 =. 𝑦) ∨ (𝑥 < 𝑦)
2. For every natural number there is a greater one.

∀𝑥 : Nat. ∃𝑦 : Nat. (𝑥 < 𝑦)
3. Two natural numbers are equal only if their respective successors are equal.

∀𝑥 : Nat. ∀𝑦 : Nat. (𝑥 =. 𝑦) → (𝑆(𝑥) =. 𝑆(𝑦))
4. Two natural numbers are equal if their respective successors are equal.

∀𝑥 : Nat. ∀𝑦 : Nat. (𝑆(𝑥) =. 𝑆(𝑦)) → (𝑥 =. 𝑦)
5. No two distinct natural number have the same successor.

∀𝑥 : Nat. ∀𝑦 : Nat. ¬(𝑥 =. 𝑦) → ¬(𝑆(𝑥) =. 𝑆(𝑦))
6. There are at least two natural number smaller than 3.

∃𝑥 : Nat. ∃𝑦 : Nat. ¬(𝑥 =. 𝑦) ∧ (𝑥 < 𝑆(𝑆(𝑆(0)))) ∧ (𝑦 < 𝑆(𝑆(𝑆(0))))
7. There is no largest natural number.

¬∃𝑥 : Nat. ∀𝑦 : Nat. (𝑦 =. 𝑥) ∨ (𝑦 < 𝑥)

37 / 58

From English to FOL [2]
1. Everyone has a father and a mother.

∀𝑥 : Person. ∃𝑦 : Person. ∃𝑧 : Person. (𝑦 =. pa(𝑥)) ∧ (𝑧 =. ma(𝑥))
2. The marriage relation is symmetric.

∀𝑥 : Person. ∀𝑦 : Person. sp(𝑥, 𝑦) → sp(𝑦, 𝑥)
3. No one can be married to themselves.

∀𝑥 : Person. ¬ sp(𝑥, 𝑥)
4. Not all people are married.

¬∀𝑥 : Person. ∃𝑦 : Person. sp(𝑥, 𝑦)
5. Some people have a farther and a mother who are not married to each other.

∃𝑥 : Person. ¬ sp(ma(𝑥), pa(𝑥))
6. You cannot marry more than one person.

∀𝑥 : Person. ∀𝑦 : Person. ∀𝑧 : Person. (sp(𝑥, 𝑦) ∧ sp(𝑥, 𝑧)) → (𝑦 =. 𝑧)
7. Some people are not mothers.

∃𝑥 : Person. ∀𝑦 : Person. ¬(𝑥 =. ma(𝑦))
8. Nobody can be both a farther and a mother.

∀𝑥 : Person. ¬∃𝑦 : Person. ¬∃𝑧 : Person. (𝑥 =. pa(𝑦)) ∧ (𝑥 =. ma(𝑧))
38 / 58

From English to FOL [3]
9. Nobody can be their own or farther’s farther.

∀𝑥 : Person. ¬((𝑥 =. pa(𝑥)) ∨ (𝑥 =. pa(pa(𝑥))))
10. Some people do not have children.

∃𝑥 : Person. ∀𝑦 : Person. ¬(𝑦 =. pa(𝑥)) ∧ ¬(𝑦 =. ma(𝑦))

39 / 58

Invariance of Term Values
Consider a signature Σ, a sort context Γ, and two interpretations ℐ and 𝒥 that agree on the sorts and
symbols of Σ.

Theorem 1 : If ℐ and 𝒥 also agree on the variables of a Σ-term 𝑡, then 𝑡ℐ = 𝑡𝒥.

Proof : By structural induction on 𝑡.
• If 𝑡 is a variable or a constant, then 𝑡ℐ = 𝑡ℐ and 𝑡𝒥 = 𝑡𝒥. Since 𝑡ℐ = 𝑡𝒥 by assumption, we have 𝑡ℐ = 𝑡𝒥.
• If 𝑡 is a term (𝑓 𝑡1 ⋯ 𝑡𝑛) with 𝑛 > 1, then 𝑓ℐ = 𝑓𝒥 by assumption and 𝑡ℐ𝑖 = 𝑡𝒥𝑖 for 𝑗 ≥ 1 by induction

hypothesis. It follows, 𝑡ℐ = 𝑓ℐ(𝑡ℐ1 , …, 𝑡ℐ𝑛) = 𝑓𝒥(𝑡𝒥1 , …, 𝑡𝒥𝑛) = 𝑡𝒥.

□

40 / 58

Invariance of Truth Values

Theorem 2 : If ℐ and 𝒥 also agree on the free variables of a Σ-formula 𝛼, then 𝛼ℐ = 𝛼𝒥.

Proof : By induction on 𝛼.
• If 𝛼 is an atomic formula, the result follows from the previous lemma, since 𝛼 is a term and all of its

variables are free in it.
• If 𝛼 is ¬𝛽 or 𝛼1 ∗ 𝛼2 with ∗ ∈ {∧, ∨, →, ↔}, the result follows from the induction hypothesis.
• If 𝛼 is 𝑄 𝑥 : 𝜎. 𝛽 with 𝑄 ∈ {∀, ∃}, then ℱ𝒱(𝛽) = ℱ𝒱(𝛼) ∪ {𝑥}. For any 𝑐 in 𝜎ℐ, ℐ[𝑥 ↦ 𝑐] and 𝒥[𝑥 ↦ 𝑐]

agree on 𝑥 by construction and on ℱ𝒱(𝛼) by assumption. The result follows from the induction
hypothesis and the semantics of ∀ and ∃.

□

Corollary 2.1 : The truth value of Σ-sentences is independent from how the variables are interpreted.

41 / 58

Deduction Theorem of FOL

Theorem 3 : For all Σ-formulas 𝛼 and 𝛽, we have 𝛼 ⊨ 𝛽 iff 𝛼 → 𝛽 is valid.

Proof (⇒) : If 𝛼 ⊨ 𝛽 then 𝛼 → 𝛽 is valid.

Let ℐ be an interpretation and let 𝛾 ≔ 𝛼 → 𝛽.
• If ℐ falsifies 𝛼, then it trivially satisfies 𝛾.
• If ℐ satisfies 𝛼, then, since 𝛼 ⊨ 𝛽, it must also satisfy 𝛽. Hence, it satisfies 𝛾.

In both cases, ℐ satisfies 𝛾, thus ℐ ⊨ 𝛼 → 𝛽 for every interpretation ℐ. □

Proof (⇐) : If 𝛼 → 𝛽 is valid then 𝛼 ⊨ 𝛽.

Let ℐ be an interpretation that satisfies 𝛼. If ℐ falsifies 𝛽, then it must also falsify 𝛼 → 𝛽, contradicting the
assumption that 𝛼 → 𝛽 is valid. Thus, every interpretation ℐ that satisfies 𝛼 also satisfies 𝛽. □

Corollary 3.1 : For all Σ-formulas 𝛼 and 𝛽, we have ⊨ 𝛼 → 𝛽 iff 𝛼 → 𝛽 is valid.

42 / 58

Free Variables Theorem 1

Theorem 4 : Consider a signature Σ and a sort context Γ. Let Φ be a set of Σ-formulas, let 𝛼 be a
Σ-formula with free variables from Γ, and let 𝑥 ∈ ℱ𝒱(𝛼) be a free variable of sort 𝜎 in Γ.

Suppose 𝑥 occurs free in no formulas of Φ. Then, Φ ⊨ 𝛼 iff Φ ⊨ ∀𝑥 : 𝜎. 𝛼.

Proof (⇒) : If Φ ⊨ 𝛼 then Φ ⊨ ∀𝑥 : 𝜎. 𝛼.

Let ℐ be an interpretation that satisfies Φ. Since 𝑥 does not occur free in any formulas of Φ, ℐ satisfies all
formulas in Φ regardless of how it interprets 𝑥. Then, for any element 𝑐 ∈ 𝜎ℐ, the interpretation ℐ[𝑥 ↦ 𝑐]
satisfies all formulas in Φ, including 𝛼 (because Φ ⊨ 𝛼). Thus, it also satisfies the formula ∀𝑥 : 𝜎. 𝛼, by the
semantics of ∀. Hence, every interpretation that satisfies Φ also satisfies ∀𝑥 : 𝜎. 𝛼, that is, Φ ⊨ ∀𝑥 : 𝜎. 𝛼. □

Proof (⇐) : If Φ ⊨ ∀𝑥 : 𝜎. 𝛼 then Φ ⊨ 𝛼.

Let ℐ be an interpretation that satisfies Φ. By assumption, ℐ ⊨ ∀𝑥 : 𝜎. 𝛼. This implies that ℐ ⊨ 𝛼 regardless
of how ℐ interprets 𝑥. Hence, Φ ⊨ 𝛼. □

43 / 58

Free Variables Theorem 2

Theorem 5 : Consider a signature Σ and a sort context Γ. Let 𝛽 be a Σ-formula, let 𝛼 be a Σ-formula
with free variables from Γ, and let 𝑥 ∈ ℱ𝒱(𝛼) be a free variable of sort 𝜎 in Γ.

Suppose 𝑥 does not occur free in 𝛽. Then, 𝛼 ⊨ 𝛽 iff ∃𝑥 : 𝜎. 𝛼 ⊨ 𝛽.

Proof (⇒) : If 𝛼 ⊨ 𝛽 then ∃𝑥 : 𝜎. 𝛼 ⊨ 𝛽.

Let ℐ be an interpretation that satisfies ∃𝑥 : 𝜎.𝛼. This means that ℐ[𝑥 ↦ 𝑐] satisfies 𝛼 for some 𝑐 ∈ 𝜎ℐ. By
assumption, ℐ[𝑥 ↦ 𝑐] satisfies 𝛽 as well. Since 𝑥 does not occur free in 𝛽, changing the value assigned to 𝑥
does not matter. It follows that ℐ satisfies 𝛽. Since ℐ was arbitrary, this shows that ∃𝑥 : 𝜎.𝛼 ⊨ 𝛽. □

Proof (⇐) : If ∃𝑥 : 𝜎. 𝛼 ⊨ 𝛽 then 𝛼 ⊨ 𝛽.

Let ℐ be an interpretation that satisfies 𝛼. Then, trivially¹, ℐ satisfies ∃𝑥 : 𝜎. 𝛼. By assumption, ℐ ⊨ 𝛽.
Since ℐ was arbitrary, 𝛼 ⊨ 𝛽. □

¹Recall that any domain 𝜎ℐ is non-empty.
44 / 58

§4 Proofs in FOL

Semantic Arguments for FOL

ℐ ⊨ ¬𝛼(a)
ℐ ⊭ 𝛼

ℐ ⊭ ¬𝛼(b)
ℐ ⊨ 𝛼

ℐ ⊨ 𝛼 ∧ 𝛽(c)
ℐ ⊨ 𝛼, ℐ ⊨ 𝛽

ℐ ⊭ 𝛼 ∧ 𝛽(d)
ℐ ⊭ 𝛼 | ℐ ⊭ 𝛽

ℐ ⊨ 𝛼 ∨ 𝛽(e)
ℐ ⊨ 𝛼 | ℐ ⊨ 𝛽

ℐ ⊭ 𝛼 ∨ 𝛽(f)
ℐ ⊭ 𝛼, ℐ ⊭ 𝛽

ℐ ⊨ 𝛼 ℐ ⊭ 𝛼(i)
ℐ ⊨ ⊥

ℐ ⊨ 𝛼 → 𝛽(g)
ℐ ⊭ 𝛼 | ℐ ⊨ 𝛽

ℐ ⊭ 𝛼 → 𝛽(h)
ℐ ⊨ 𝛼, ℐ ⊭ 𝛽

ℐ ⊨ 𝛼 ↔ 𝛽(j)
ℐ ⊨ 𝛼, ℐ ⊨ 𝛽 | ℐ ⊭ 𝛼, ℐ ⊭ 𝛽

ℐ ⊭ 𝛼 ↔ 𝛽(k)
ℐ ⊭ 𝛼, ℐ ⊨ 𝛽 | ℐ ⊨ 𝛼, ℐ ⊭ 𝛽

46 / 58

§5 Other slides

Terms (simple)

Definition 20 (Variables) : A set 𝑋 of Σ-variables, or simply variables, is a countable set of variable
names, each associated with a sort from Σ𝑆 .

Based on variables, we can build terms. Intuitevely, terms are expressions that evaluate to values.

Definition 21 (Terms) : The Σ-terms over 𝑋, or simply terms, are defined inductively:
• Each variable 𝑥 in 𝑋 is a term of sort 𝜎.
• If 𝑐 ∈ Σ𝐹 is a constant symbol of sort 𝜎, then 𝑐 is a term of sort 𝜎.
• If 𝑡1, …, 𝑡𝑛 are terms of sorts 𝜎1, …, 𝜎𝑛, and 𝑓 is a function symbol with rank(𝑓) = ⟨𝜎1, …, 𝜎𝑛, 𝜎⟩,

then (𝑓 𝑡1 ⋯ 𝑡𝑛) is a term of sort 𝜎.
• (Nothing else is a term.)

48 / 58

Formulas (simple)
Based on terms, we can build atoms. Intuitevely, atoms are expressions that evaluate Boolean values.

Definition 22 (Atoms) : The Σ-atoms over 𝑋, or simply atoms, are terms of the form (𝑝 𝑡1 ⋯ 𝑡𝑛),
where 𝑡1, …, 𝑡𝑛 are terms of sorts 𝜎1, …, 𝜎𝑛, and 𝑝 is a predicate with rank(𝑝) = ⟨𝜎1, …, 𝜎𝑛, Bool⟩.

In addition to sorted Σ-variables 𝑋, also consider propositional variables ℬ.

Definition 23 (Formulas) : The Σ-formulas over 𝑋 and ℬ, or simply formulas, are defined inductively:
• Each propositional variable 𝑝 in ℬ is a formula.
• Each Σ-atom over 𝑋 is a formula.
• If 𝛼 and 𝛽 are formulas, then so are ¬𝛼, (𝛼 ∨ 𝛽), (𝛼 ∧ 𝛽), (𝛼 → 𝛽), and (𝛼 ↔ 𝛽).
• For each variable 𝑥 ∈ 𝑋 and sort 𝜎 ∈ Σ𝑆 , if 𝛼 is a formula, then so are ∀𝑥 : 𝜎. 𝛼 and ∃𝑥 : 𝜎. 𝛼.

49 / 58

Syntax and Semantics of FOL

Definition 24 (Vocabulary) : A vocabulary (also known as signature) of a language is a collection of
symbols used to construct sentences in that language. A vocabulary 𝒱 = ⟨𝒞, ℱ, 𝒫⟩ consists of:
• A set of constant symbols 𝒞, e.g., 0, ⊥, ∅, …
• A set of function symbols ℱ, e.g., 𝑆, +, ×, …
• A set of predicate symbols 𝒫, e.g., =, <, ∈, …

Definition 25 (Model) : A possible world (also known as model, or structure, or interpretation) is a
mathematical object that gives meaning to the symbols in a vocabulary. A model ℳ for 𝒱 consists of:
• A domain 𝒟 = dom(ℳ), which is a non-empty set of objects (universe).
• For each constant symbol 𝑐 in 𝒞, its interpretation 𝑐ℳ is an element of 𝒟.
• For each 𝑘-ary function symbol 𝑓 in ℱ, its interpretation 𝑓ℳ is a 𝑘-ary total function on 𝒟.
• For each 𝑘-ary predicate symbol 𝑝 in 𝒫, its interpretation 𝑝ℳ is a 𝑘-ary relation on 𝒟.

50 / 58

Semantics Example
Example : Let 𝒱field consist of 2-ary functions + and ×, constants 0 and 1, and 2-ary predicates = and <.

One possible interpretation ℳ is:
• 𝒟 = ℤ, the integer numbers. 0ℳ and 1ℳ are the usual integers zero and one.
• +ℳ, ×ℳ, =ℳ, <ℳ are the usual arithmetic operators on integers.

Alternatively, 𝒟 = ℝ, 0ℳ ≔ 3.14159, 1ℳ ≔ 42. There are infinitely many possible interpretations!

51 / 58

Predicate Logic Statements

Definition 26 (Formula) : A formula is a statement about the objects in a world.

Example : 𝑥 is a even number.

Definition 27 (Sentence) : A sentence is a statement about a world.

Example : Every even natural number greater than 2 is a sum of two prime numbers.

52 / 58

Some Computational Challenges

Decision problem Formalization Description
Validity ⊨ 𝜑 Is 𝜑 true in every world?
Satisfiability ∃ℳ. ℳ ⊨ 𝜑 Is 𝜑 true in some world?
Model checking ℳ ⊨ 𝜑 Is 𝜑 true in a given world?

53 / 58

First-Order Model Checking
First basic computational problem in predicate logic is Model Checking.

Definition 28 : Model checking problem for first-order logic is the problem of determining whether a
given first-order formula 𝜑 is satisfied by a given structure ℳ, formally, ℳ ⊨ 𝜑.

MCFO = {⟨ℳ, 𝜑⟩ | ℳ ⊨ 𝜑}

Note : MCFO is decidable in |ℳ||𝜑| time.

54 / 58

First-Order Model Checking [2]

Theorem 6 : MCFO is NP-hard.

Proof : SAT can be reduced to MCFO.

Let 𝜑 be a propositional formula. For example, 𝜑 ≔ (𝑝1 ∨ ¬𝑝2 ∨ 𝑝3) ∧ …

Construct a model ℳ with interpretations for true and false, and a first-order formula 𝜑′:

𝜑′ ≔ ∃𝑥1, …, 𝑥𝑛. ((𝑥1 = true) ∨ (¬𝑥2 = true) ∨ (𝑥3 = true)) ∧ …

Then, 𝜑 is satisfiable iff ℳ ⊨ 𝜑′. □

55 / 58

FOL and Computation
Second basic computational problem in predicate logic is Finite Satisfiability Problem.

Given a sentence 𝜑, is it finitely satisfiable? That is, does there exist a finite model ℳ such that ℳ ⊨ 𝜑?

FSP is semi-decidable, undecidable.

Corollary: Finite Validity is not RE, but in co-RE.

TODO: third problem is validity.

More:
• set of validities in FOL is in RE
• FOL satisfiability is undecidable

56 / 58

Finite Satisfiability

Definition 29 : Finite Satisfiability Problem (FSP) is the problem of determining whether a given first-
order formula 𝜑 has a finite model ℳ such that ℳ ⊨ 𝜑.

Example : Let 𝜑 be the first-order formula obtained as the conjunction of the following sentences, where
𝑎𝑖 are constants:
• 𝑅(𝑎0, 𝑎1)
• ∀𝑥, 𝑦. (𝑅(𝑥, 𝑦) → ∃𝑧. 𝑅(𝑦, 𝑧))
• ∀𝑥, 𝑦, 𝑧. (𝑅(𝑦, 𝑥) ∧ 𝑅(𝑧, 𝑥) → (𝑦 = 𝑧))
• ∀𝑥. ¬𝑅(𝑥, 𝑎0)

Formula 𝜑 has the infinite model 𝑅(𝑎0, 𝑎1), 𝑅(𝑎1, 𝑎2), …, but is not finitely satisfiable.

Theorem 7 (Trakhtenbrot) : Finite satisfiability problem for first-order logic is undecidable.

57 / 58

TODO: Exercises
• Parse tree of a FOL formula
• Describe Euclidean geometry as a FOL theory

58 / 58

	Introduction to FOL
	Motivation
	What is First-Order Logic?
	Predicates and Functions
	First-Order Language

	Formalizing FOL
	Syntax
	Statements
	Free and Bound Variables
	Grammar
	Semantics

	Many-Sorted FOL
	Syntax
	Signatures
	Equality
	First-Order Languages
	Expressions
	Terms
	Well-sortedness
	Examples of Well-sorted Terms
	Formulas
	Examples of Formulas
	Well-sorted Formulas
	Free and Bound Variables
	Scope
	FOL Semantics
	Semantics
	Semantics: Example
	Term and Formula Semantics
	Satisfiability, Entailment, Validity
	Exercise
	From English to FOL
	Invariance of Term Values
	Invariance of Truth Values
	Deduction Theorem of FOL
	Free Variables Theorem 1
	Free Variables Theorem 2

	Proofs in FOL
	Semantic Arguments for FOL

	Other slides
	Terms (simple)
	Formulas (simple)
	Syntax and Semantics of FOL
	Semantics Example
	Predicate Logic Statements
	Some Computational Challenges
	First-Order Model Checking
	FOL and Computation
	Finite Satisfiability
	TODO: Exercises

