
Formal Methods in Software Engineering
Normal Forms — Spring 2025
Konstantin Chukharev

§1 Normal Forms

Normal Forms in Propositional Logic

Definition 1 (Normal form): A normal form is a standardized syntactic representation of logical
formulas with a restricted structure.

Normal forms enable efficient reasoning, simplification, and decision procedures, making them
essential in automated theorem proving, model checking, and logic synthesis.

There are several normal forms commonly used in propositional logic:
• Negation normal form (NNF)
• Conjunctive normal form (CNF)
• Disjunctive normal form (DNF)
• Algebraic normal form (ANF)
• Binary decision diagram (BDD)

Each normal form has its own advantages and disadvantages, and is used in different contexts.

Every propositional formula can be converted to an equivalent formula in any of these normal forms.

3 / 18

Negation Normal Form

Definition 2 (Negation Normal Form (NNF)) : A formula is in negation normal form if the negation
operator (¬) is only applied to variables, and the only allowed logical connectives are ∧ and ∨.

Example : The formula (𝑝 ∧ 𝑞) ∨ (¬𝑝 ∧ ¬𝑞) is in NNF.

Example : The formula ¬(𝑝 ∧ 𝑞) ∨ (¬𝑝 ∧ ¬𝑞) is not in NNF due to ¬(…).

Grammar for NNF formulas:

⟨Atom⟩ ⩴ ⊤ | ⊥ | ⟨Variable⟩
⟨Literal⟩ ⩴ ⟨Atom⟩ | ¬⟨Atom⟩

⟨Formula⟩ ⩴ ⟨Literal⟩ | ⟨Formula⟩ ∧ ⟨Formula⟩ | ⟨Formula⟩ ∨ ⟨Formula⟩

4 / 18

Literals

Definition 3 (Literal) : A literal is a propositional variable or its negation.
• 𝑝 is a positive literal.
• ¬𝑝 is a negative literal.

Definition 4 (Complement) : The complement of a literal 𝑝 is denoted by 𝑝.

𝑝 = {¬𝑝 if 𝑝 is positive
𝑝 if 𝑝 is negative

Note: complementary literals 𝑝 and 𝑝 are each other’s completement.

5 / 18

NNF Transformation
Any propositional formula can be converted to NNF by the repeated application of the following rewriting
rules (⟹) to the formula and its sub-formulas, to completion (until none apply):

Description Rewrite rule
Eliminate implications (𝐴 → 𝐵) ⟹ (¬𝐴 ∨ 𝐵)
Eliminate bi-implications (𝐴 ↔ 𝐵) ⟹ (¬𝐴 ∨ 𝐵) ∧ (𝐴 ∨ ¬𝐵)
Push negation inside conjunctions ¬(𝐴 ∧ 𝐵) ⟹ (¬𝐴 ∨ ¬𝐵)
Push negation inside disjunctions ¬(𝐴 ∨ 𝐵) ⟹ ¬𝐴 ∧ ¬𝐵
Eliminate double negations ¬¬𝐴 ⟹ 𝐴

Theorem 1 : Every well-formed formula not containing ↔ can be converted to an equivalent NNF
with a linear increase in the size¹ of the formula.

¹For example, number of variable occurences, or number of sub-formulas.
6 / 18

Exponential Blowup of NNF
The NNF of formulas containing ↔ can grow exponentially in size.

Example : Let’s convert the following formula to NNF…

𝐹 = 𝑎 ↔ (𝑏 ↔ (𝑐 ↔ 𝑑)) ⟹
= 𝑎 ↔ (𝑏 ↔ ((𝑐 → 𝑑) ∧ (𝑑 → 𝑐))) ⟹
= 𝑎 ↔ ((𝑏 → ((𝑐 → 𝑑) ∧ (𝑑 → 𝑐))) ∧ (((𝑐 → 𝑑) ∧ (𝑑 → 𝑐)) → 𝑏)) ⟹
= 𝑎 ↔ ((𝑏 ∨ (…)) ∧ (¬(…) ∨ 𝑏)) ⟹
= (¬𝑎 ∨ (…)) ∧ (𝑎 ∨ ¬(…)) ⟹
= (¬𝑎 ∨ ((𝑏 ∨ (…)) ∧ (¬(…) ∨ 𝑏))) ∧

(𝑎 ∨ ¬((𝑏 ∨ (…)) ∧ (¬(…) ∨ 𝑏)))

The original 𝐹 contains only 4 variable occurences, while the NNF of 𝐹 contains 16 variable occurences.

7 / 18

Disjunctive Normal Form

Definition 5 (Disjunctive Normal Form (DNF)) : A formula is said to be in disjunctive normal form if it
is a disjunction of cubes (conjunctions of literals).

𝐴 = ⋁
𝑖

⋀
𝑗

𝑝𝑖𝑗

Example : 𝐴 = (𝑝 ∧ 𝑞) ∨ (¬𝑝 ∧ 𝑞 ∧ 𝑟) ∨ ¬𝑞

Grammar for DNF formulas:

⟨Atom⟩ ⩴ ⊤ | ⊥ | ⟨Variable⟩
⟨Literal⟩ ⩴ ⟨Atom⟩ | ¬⟨Atom⟩
⟨Cube⟩ ⩴ ⟨Literal⟩ | ⟨Literal⟩ ∧ ⟨Cube⟩

⟨Formula⟩ ⩴ ⟨Cube⟩ | ⟨Cube⟩ ∨ ⟨Formula⟩

8 / 18

Cubes and Clauses

Definition 6 (Cube) : A cube is a conjunction of literals.

Definition 7 (Clause) : A clause is a disjunction of literals.
• An empty clause is a clause with no literals, commonly denoted by □.
• A unit clause is a clause with a single literal, that is, just a literal itself.
• A Horn clause is a clause with at most one positive literal.

Note: □ is false in every interpretation, that is, unsatisfiable.

9 / 18

Conjunctive Normal Form

Definition 8 (Conjunctive Normal Form (CNF)) : A formula is said to be in conjunctive normal form if
it is a conjunction of clauses.

𝐴 = ⋀
𝑖

⋁
𝑗

𝑝𝑖𝑗

Example : 𝐴 = (¬𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ 𝑞 ∨ 𝑟) ∧ ¬𝑞

10 / 18

Satisfiability on CNF
An interpretation 𝜈 satisfies a clause 𝐶 = 𝑝1 ∨ … ∨ 𝑝𝑛 if it satisfies some (at least one) literal 𝑝𝑘 in 𝐶 .

An interpretation 𝜈 satisfies a CNF formula 𝐴 = 𝐶1 ∧ … ∧ 𝐶𝑛 if it satisfies every clause 𝐶𝑖 in 𝐴.

A CNF formula 𝐴 is satisfiable if there exists an interpretation 𝜈 that satisfies 𝐴.

The SAT problem is about determining whether a given CNF formula is satisfiable.

11 / 18

CNF Transformation
Any propositional formula can be converted to CNF by the repeated application of these rewriting rules:
• Any NNF transformation rules.
• Distribute ∨ over ∧ (another source of exponential blowup):

‣ 𝐴 ∨ (𝐵 ∧ 𝐶) ⟹ (𝐴 ∨ 𝐵) ∧ (𝐴 ∨ 𝐶)
‣ (𝐴 ∧ 𝐵) ∨ 𝐶 ⟹ (𝐴 ∨ 𝐶) ∧ (𝐵 ∨ 𝐶)

• Normalize nested ∧ and ∨ operators:
‣ 𝐴 ∧ (𝐵 ∧ 𝐶) ⟹ (𝐴 ∧ 𝐵 ∧ 𝐶)
‣ 𝐴 ∨ (𝐵 ∨ 𝐶) ⟹ (𝐴 ∨ 𝐵 ∨ 𝐶)

Theorem 2 : Every well-formed formula 𝛼 can be converted to an equivalent CNF 𝛼′ with a potentially
exponential increase in the size of the formula.

12 / 18

Exponential Blowup of CNF
Distributive law is the main source of the exponential blowup in CNF conversion:

𝑛 cubes

{
{
{
{
{
{
{(𝑥1 ∧ 𝑦1) ∨

(𝑥2 ∧ 𝑦2) ∨
…

(𝑥𝑛 ∧ 𝑦𝑛) ∨

⟹
CNF

(𝑥1 ∨ 𝑥2 ∨ … ∨ 𝑥𝑛) ∧
(𝑦1 ∨ 𝑥2 ∨ … ∨ 𝑥𝑛) ∧
…

(𝑥1 ∨ 𝑦2 ∨ … ∨ 𝑦𝑛) ∧
(𝑦1 ∨ 𝑦2 ∨ … ∨ 𝑦𝑛) }

}
}
}
}
}
}

2𝑛 clauses

Is there a way to avoid the exponential blowup? Yes!

13 / 18

Tseitin Transformation
A space-efficient way to convert a formula to CNF is the Tseitin transformation, which is based on so-called
“naming” or “definition introduction”, allowing to replace subformulas with the “fresh” (new) variables.

1. Take a subformula 𝐴 of a formula 𝐹 .
2. Introduce a new propositional variable 𝑛.
3. Add a definition for 𝑛, that is, a formula stating that 𝑛 is equivalent to 𝐴.
4. Replace 𝐴 with 𝑛 in 𝐹 .

Overall, construct 𝑆 ≔ 𝐹[𝑛/𝐴] ∧ (𝑛 ↔ 𝐴)

𝐹 = 𝑝1 ↔ (𝑝2 ↔ (𝑝3 ↔ (𝑝4 ↔
𝐴

⏠⏠⏠(𝑝5 ↔ 𝑝6))) ⟹
𝑆 = 𝑝1 ↔ (𝑝2 ↔ (𝑝3 ↔ (𝑝4 ↔ 𝑛))) ∧

𝑛 ↔ (𝑝5 ↔ 𝑝6)

Note : The resulting formula is, in general, not equivalent to the original one, but it is equisatisfiable, i.e.,
it is satisfiable iff the original formula is satisfiable.

14 / 18

Equisatisfiability

Definition 9 (Equisatisfiability) : Two formulas 𝐴 and 𝐵 are equisatisfiable if 𝐴 is satisfiable if and
only if 𝐵 is satisfiable.

The set 𝑆 of clauses obtained by the Tseitin transformation is equisatisfiable with the original formula 𝐹 .
• Every model of 𝑆 is a model of 𝐹 .
• Every model of 𝐹 can be extended to a model of 𝑆 by assigning the values of fresh variables according to

their definitions.

15 / 18

Avoiding the Exponential Blowup
Example : 𝐹 = 𝑝1 ↔ (𝑝2 ↔ (𝑝3 ↔ (𝑝4 ↔ (𝑝5 ↔ 𝑝6))))

Applying the Tseitin transformation gives us:

𝑆 = 𝑝1 ↔ (𝑝2 ↔ 𝑛3) ∧
𝑛3 ↔ (𝑝3 ↔ 𝑛4) ∧
𝑛4 ↔ (𝑝4 ↔ 𝑛5) ∧
𝑛5 ↔ (𝑝5 ↔ 𝑝6)

The equivalent CNF of 𝐹 consists of 25 = 32 clauses, and grows exponentially with number of variables.

The equisatisfiable CNF of 𝐹 consists of 16 clauses, yet introduces 3 fresh variables, and grows linearly
with the number of variables.

16 / 18

Clausal Form

Definition 10 (Clausal form): A clausal form of a formula 𝐹 is a set 𝑆𝐹 of clauses which is satisfiable
iff 𝐹 is satisfiable.

A clausal form of a set of formulas 𝑆 is a set 𝑆′ of clauses which is satisfiable iff 𝑆 is satisfiable.

Even stronger requirement:
• 𝐹 and 𝑆𝐹 have the same models in the language of 𝐹 .
• 𝑆 and 𝑆′ have the same models in the language of 𝑆.

The main advantage of the clausal form over the equivalent CNF is that we can convert any formula into a
set of clauses in almost linear time.
1. If 𝐹 is a formula which has the form 𝐶1 ∧ … ∧ 𝐶𝑛, where 𝑛 > 0 and each 𝐶𝑖 is a clause, then its clausal

form is 𝑆 ≝ {𝐶1, …, 𝐶𝑛}.
2. Otherwise, apply Tseitin transformation: introduce a name for each subformula 𝐴 of 𝐹 such that 𝐴 is

not a literal and use this name instead of a subformula 𝐴.

17 / 18

TODO
Exercises
Example: convert formula to clausal form
DNF vs CNF satisfiability

18 / 18

	Normal Forms
	Normal Forms in Propositional Logic
	Negation Normal Form
	Literals
	NNF Transformation
	Exponential Blowup of NNF
	Disjunctive Normal Form
	Cubes and Clauses
	Conjunctive Normal Form
	Satisfiability on CNF
	CNF Transformation
	Exponential Blowup of CNF
	Tseitin Transformation
	Equisatisfiability
	Avoiding the Exponential Blowup
	Clausal Form
	TODO

