
Formal Methods in Software Engineering
Propositional Logic — Spring 2025
Konstantin Chukharev

§1 Propositional Logic

Motivation
• Boolean functions are at the core of logic-based reasoning.
• A Boolean function 𝐹(𝑋1, …, 𝑋𝑛) describes the output of a system based on its inputs.
• Boolean gates (AND, OR, NOT) form the building blocks of digital circuits.
• Propositional logic formalizes reasoning about Boolean functions and circuits.
• Applications:

‣ Digital circuit design.
‣ Verification and synthesis of hardware and software.
‣ Expressing logical constraints in AI and optimization problems.
‣ Automated reasoning and theorem proving.

3 / 34

Boolean Circuits and Propositional Logic
Boolean circuit is a directed acyclic graph (DAG) of Boolean gates.
• Inputs: Propositional variables.
• Outputs: Logical expressions describing the circuit’s behavior.

“Can the output of a circuit ever be true?”
• Propositional logic provides a formal framework to answer such questions.

Real-world examples:
• Error detection circuits.
• Arithmetic logic units (ALUs) in processors.
• Routing logic in network devices.

4 / 34

What is Logic?
A formal logic is defined by its syntax and semantics.

□ Syntax
• An alphabet Σ is a set of symbols.
• A finite sequence of symbols (from Σ) is called an expression or string (over Σ).
• A set of rules defines the well-formed expressions.

□ Semantics
• Gives meaning to (well-formed) expressions.

5 / 34

Syntax of Propositional Logic
□ Alphabet
1. Logical connectives: ¬, ∧, ∨, →, ↔.
2. Propositional variables: 𝐴1, 𝐴2, …, 𝐴𝑛.
3. Parentheses for grouping: (,).

□ Well-Formed Formulas (WFFs)
Valid (well-formed) expressions are defined inductively:
1. A single propositional symbol (e.g. 𝐴) is a WFF.
2. If 𝛼 and 𝛽 are WFFs, so are: ¬𝛼, (𝛼 ∧ 𝛽), (𝛼 ∨ 𝛽), (𝛼 → 𝛽), (𝛼 ↔ 𝛽).
3. No other expressions are WFFs.

6 / 34

Syntax of Propositional Logic [2]
□ Conventions
• Large variety of propositional variables: 𝐴, 𝐵, 𝐶, …, 𝑝, 𝑞, 𝑟, ….
• Outer parentheses can be omitted: 𝐴 ∧ 𝐵 instead of (𝐴 ∧ 𝐵).
• Operator precedence: ¬ > ∧ > ∨ > → > ↔.
• Left-to-right associativity for ∧ and ∨: 𝐴 ∧ 𝐵 ∧ 𝐶 = (𝐴 ∧ 𝐵) ∧ 𝐶 .
• Right-to-left associativity for →: 𝐴 → 𝐵 → 𝐶 = 𝐴 → (𝐵 → 𝐶).

7 / 34

Semantics of Propositional Logic
• Each propositional variable is assigned a truth value: 𝑇 (true) or 𝐹 (false).

• More formally, interpretation 𝜈 : 𝑉 → {0, 1} assigns truth values to all variables (atoms).

• Truth values of complex formulas are computed (evaluated) recursively:
1. ⟦𝑝⟧𝜈 ≜ 𝜈(𝑝), where 𝑝 ∈ 𝑉 is a propositional variable
2. ⟦¬𝛼⟧𝜈 ≜ 1 − ⟦𝛼⟧𝜈
3. ⟦𝛼 ∧ 𝛽⟧𝜈 ≜ min(⟦𝛼⟧𝜈 , ⟦𝛽⟧𝜈)
4. ⟦𝛼 ∨ 𝛽⟧𝜈 ≜ max(⟦𝛼⟧𝜈 , ⟦𝛽⟧𝜈)
5. ⟦𝛼 → 𝛽⟧𝜈 ≜ (⟦𝛼⟧𝜈 ≤ ⟦𝛽⟧𝜈) = max(1 − ⟦𝛼⟧𝜈 , ⟦𝛽⟧𝜈)
6. ⟦𝛼 ↔ 𝛽⟧𝜈 ≜ (⟦𝛼⟧𝜈 = ⟦𝛽⟧𝜈) = 1 − |⟦𝛼⟧𝜈 − ⟦𝛽⟧𝜈 |

8 / 34

§2 Foundations

Truth Tables

𝛼 𝛽 𝛾 𝛼 ∧ (𝛽 ∨ ¬𝛾)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

10 / 34

Normal Forms
• Conjunctive Normal Form (CNF):

‣ A formula is in CNF if it is a conjunction of clauses (disjunctions of literals).

Example : (𝐴 ∨ 𝐵) ∧ (¬𝐴 ∨ 𝐶) ∧ (𝐵 ∨ ¬𝐶) — CNF with 3 clauses.

• Disjunctive Normal Form (DNF):
‣ A formula is in DNF if it is a disjunction of cubes (conjunctions of literals).

Example : (¬𝐴 ∧ 𝐵) ∨ (𝐵 ∧ 𝐶) ∨ (¬𝐴 ∧ 𝐵 ∧ ¬𝐶) — DNF with 3 cubes.

• Algebraic Normal Form (ANF):
‣ A formula is in ANF if it is a sum of products of variables (or a constant 1).

Example : 𝐵 ⊕ 𝐴𝐵 ⊕ 𝐴𝐵𝐶 — ANF with 3 terms.

11 / 34

Logical Laws and Tautologies
• Associative and Commutative laws for ∧, ∨, ↔:

‣ 𝐴 ∘ (𝐵 ∘ 𝐶) ≡ (𝐴 ∘ 𝐵) ∘ 𝐶
‣ 𝐴 ∘ 𝐵 ≡ 𝐵 ∘ 𝐴

• Distributive laws:
‣ 𝐴 ∧ (𝐵 ∨ 𝐶) ≡ (𝐴 ∧ 𝐵) ∨ (𝐴 ∧ 𝐶)
‣ 𝐴 ∨ (𝐵 ∧ 𝐶) ≡ (𝐴 ∨ 𝐵) ∧ (𝐴 ∨ 𝐶)

• Negation:
‣ ¬¬𝐴 ≡ 𝐴

• De Morgan’s laws:
‣ ¬(𝐴 ∧ 𝐵) ≡ ¬𝐴 ∨ ¬𝐵
‣ ¬(𝐴 ∨ 𝐵) ≡ ¬𝐴 ∧ ¬𝐵

12 / 34

Logical Laws and Tautologies [2]
• Implication:

‣ (𝐴 → 𝐵) ≡ (¬𝐴 ∨ 𝐵)

• Contraposition:
‣ (𝐴 → 𝐵) ≡ (¬𝐵 → ¬𝐴)

• Law of Excluded Middle:
‣ (𝐴 ∨ ¬𝐴) ≡ ⊤

• Contradiction:
‣ (𝐴 ∧ ¬𝐴) ≡ ⊥

• Exportation:
‣ ((𝐴 ∧ 𝐵) → 𝐶) ≡ (𝐴 → (𝐵 → 𝐶))

13 / 34

Completeness of Connectives
• All Boolean functions can be expressed using {¬, ∧, ∨} (so called “standard Boolean basis”).

• Even smaller sets are sufficient:
‣ {¬, ∧} — AIG (And-Inverter Graph), see also: AIGER format.
‣ {¬, ∨}
‣ {∧} — NAND
‣ {∨} — NOR

14 / 34

http://github.com/arminbiere/aiger

Incompleteness of Connectives
To prove that a set of connectives is incomplete, we find a property that is true for all WFFs expressed
using those connectives, but that is not true for some Boolean function.

Example : {∧, →} is not complete.

Proof : Let 𝛼 be a WFF which uses only these connectives. Let 𝜈 be an interpretation such that 𝜈(𝐴𝑖) = 1
for all propositional variables 𝐴𝑖. Next, we prove by induction that ⟦𝛼⟧𝜈 = 1.
• Base case:

‣ ⟦𝐴𝑖⟧𝜈 = 𝜈(𝐴𝑖) = 1
• Inductive step:

‣ ⟦𝛽 ∧ 𝛾⟧𝜈 = min(⟦𝛽⟧𝜈 , ⟦𝛾⟧𝜈) = 1
‣ ⟦𝛽 → 𝛾⟧𝜈 = max(1 − ⟦𝛽⟧𝜈 , ⟦𝛾⟧𝜈) = 1

Thus, ⟦𝛼⟧𝜈 = 1 for all WFFs 𝛼 built from {∧, →}. However, ⟦¬𝐴1⟧𝜈 = 0, so there is no such formula 𝛼
tautologically equivalent to ¬𝐴1. □

15 / 34

§3 Semantical Aspects

Validity, Satisfiability, Entailment
□ Validity
• 𝛼 is a tautology if 𝛼 is true under all truth assignments.

Formally, 𝛼 is valid, denoted “⊨ 𝛼”, iff ⟦𝛼⟧𝜈 = 1 for all interpretations 𝜈 ∈ {0, 1}𝑉 .
• 𝛼 is a contradiction if 𝛼 is false under all truth assignments.

Formally, 𝛼 is unsatisfiable if ⟦𝛼⟧𝜈 = 0 for all interpretations 𝜈 ∈ {0, 1}𝑉 .

□ Satisfiability
• 𝛼 is satisfiable (consistent) if there exists an interpretation 𝜈 ∈ {0, 1}𝑉 where ⟦𝛼⟧𝜈 = 1.

When 𝛼 is satisfiable by 𝜈, denoted 𝜈 ⊨ 𝛼, this interpretation is called a model of 𝛼.
• 𝛼 is falsifiable (invalid) if there exists an interpretation 𝜈 ∈ {0, 1}𝑉 where ⟦𝛼⟧𝜈 = 0.

□ Entailment
• Let Γ be a set of WFFs. Then Γ tautologically implies (semantically entails) 𝛼, denoted Γ ⊨ 𝛼,

if every truth assignment that satisfies all formulas in Γ also satisfies 𝛼.
• Formally, Γ ⊨ 𝛼 iff for all interpretations 𝜈 ∈ {0, 1}𝑉 and formulas 𝛽 ∈ Γ, if 𝜈 ⊨ 𝛽, then 𝜈 ⊨ 𝛼.
• Note: 𝛼 ⊨ 𝛽, where 𝛼 and 𝛽 are WFFs, is just a shorthand for {𝛼} ⊨ 𝛽.

17 / 34

Implication vs Entailment
The implication operator (→) is a syntactic construct, while entailment (⊨) is a semantical relation.

They are related as follows: 𝛼 → 𝛽 is valid iff 𝛼 ⊨ 𝛽.

Example : 𝐴 → (𝐴 ∨ 𝐵) is valid (a tautology), and 𝐴 ⊨ 𝐴 ∨ 𝐵

𝐴 𝐵 𝐴 ∨ 𝐵 𝐴 → (𝐴 ∨ 𝐵) 𝐴 ⊨ 𝐴 ∨ 𝐵
0 0 0 1 —
0 1 1 1 —
1 0 1 1 OK
1 1 1 1 OK

18 / 34

Examples
• 𝐴 ∨ 𝐵 ∧ (¬𝐴 ∧ ¬𝐵) is satisfiable, but not valid.
• 𝐴 ∨ 𝐵 ∧ (¬𝐴 ∧ ¬𝐵) ∧ (𝐴 ↔ 𝐵) is unsatisfiable.
• {𝐴 → 𝐵, 𝐴} ⊨ 𝐵
• {𝐴, ¬𝐴} ⊨ 𝐴 ∧ ¬𝐴
• ¬(𝐴 ∧ 𝐵) is tautologically equivalent to ¬𝐴 ∨ ¬𝐵.

19 / 34

Duality of SAT vs VALID
• SAT: Given a formula 𝛼, determine if it is satisfiable.

∃𝜈.⟦𝛼⟧𝜈

• VALID: Given a formula 𝛼, determine if it is valid.

∀𝜈.⟦𝛼⟧𝜈

• Duality: 𝛼 is valid iff ¬𝛼 is unsatisfiable.

• Note: SAT is NP, but VALID is co-NP.

20 / 34

Solving SAT using Truth Tables
Algorithm for satisfiability:
To check whether 𝛼 is satisfiable, construct a truth table for 𝛼. If there is a row where 𝛼 evaluates to true,
then 𝛼 is satisfiable. Otherwise, 𝛼 is unsatisfiable.

Algorithm for semantical entailment (tautological implication):
The check whether {𝛼1, …, 𝛼𝑘} ⊨ 𝛽, check the satisfiability of (𝛼1 ∧ … ∧ 𝛼𝑘) ∧ (¬𝛽). If it is unsatisfiable,
then {𝛼1, …, 𝛼𝑘} ⊨ 𝛽. Otherwise, {𝛼1, …, 𝛼𝑘} ⊭ 𝛽.

21 / 34

Compactness
Recall:
• A WFF 𝛼 is satisfiable if there exists an interpretation 𝜈 such that 𝜈 ⊨ 𝛼.
• Hereinafter, let Γ denote a finite set of WFFs, and Σ denote a possibly infinite set of WFFs.
• A set of WFFs Σ is satisfiable if there exists an interpretation 𝜈 that satisfies all formulas in Σ.
• A set of WFFs Σ is finitely satisfiable if every finite subset of Σ is satisfiable.

Theorem 1 (Compactness Theorem): A set of WFFs Σ is satisfiable iff it is finitely satisfiable.

Proof (⇒) : Suppose Σ is satisfiable, i.e. there exists an interpretation 𝜈 that satisfies all formulas in Σ.

This direction is trivial: any subset of a satisfiable set is clearly satisfiable.
• For each finite subset Σ′ ⊆ Σ, 𝜈 also satisfies all formulas in Σ′.
• Thus, every finite subset of Σ is satisfiable.

□

22 / 34

Compactness [2]
Proof (⇐) : Suppose Σ is finitely satisfiable, i.e. every finite subset of Σ is satisfiable.

Construct a maximal finitely satisfiable set Δ as follows:

• Let 𝛼1, …, 𝛼𝑛, … be a fixed enumeration of all WFFs.
‣ This is possible since the set of all sequences of a countable set is countable.

• Then, let:

Δ0 = Σ,

Δ𝑛+1 = {Δ𝑛 ∪ {𝛼𝑛+1} if this is finitely satisfiable,
Δ𝑛 ∪ {¬𝛼𝑛+1} otherwise.

‣ Note that each Δ𝑛 is finitely satisfiable by construction.

23 / 34

Compactness [3]
• Let Δ = ⋃𝑛∈ℕ Δ𝑛. Note:

1. Σ ⊆ Δ
2. 𝛼 ∈ Δ or ¬𝛼 ∈ Δ for any WFF 𝛼
3. Δ is finitely satisfiable by construction.

Now we need to show that Δ is satisfiable (and thus Σ ⊆ Δ is also satisfiable).

Define an interpretation 𝜈 as follows: for each propositional variable 𝑝, let 𝜈(𝑝) = 1 iff 𝑝 ∈ Δ.

We claim that 𝜈 ⊨ 𝛼 iff 𝛼 ∈ Δ. The proof is by induction on well-formed formulas.
• Base case:

‣ Suppose 𝛼 ≡ 𝑝 for some propositional variable 𝑝.
‣ By definition, ⟦𝑝⟧𝜈 = 𝜈(𝑝) = 1.

• Inductive step:
‣ (Note: we consider only two cases: ¬ and ∧, since they form a complete set of connectives.)
‣ Suppose 𝛼 ≡ ¬𝛽.

- ⟦𝛼⟧𝜈 = 1 iff ⟦𝛽⟧𝜈 = 0 iff 𝛽 ∉ Δ iff ¬𝛽 ∈ Δ iff 𝛼 ∈ Δ.

24 / 34

Compactness [4]
‣ Suppose 𝛼 ≡ 𝛽 ∧ 𝛾.

- ⟦𝛼⟧𝜈 = 1 iff both ⟦𝛽⟧𝜈 = 1 and ⟦𝛾⟧𝜈 = 1 iff both 𝛽 ∈ Δ and 𝛾 ∈ Δ.
- If both 𝛽 and 𝛾 are in Δ, then 𝛽 ∧ 𝛾 is in Δ, thus 𝛼 ∈ Δ.

• Why? Because if 𝛽 ∧ 𝛾 ∉ Δ, then ¬(𝛽 ∧ 𝛾) ∈ Δ. But then {𝛽, 𝛾, ¬(𝛽 ∧ 𝛾)} is a finite subset of Δ
that is not satisfiable, which is a contradiction of Δ being finitely satisfiable.

- Similarly, if either 𝛽 ∉ Δ or 𝛾 ∉ Δ, then 𝛽 ∧ 𝛾 ∉ Δ, thus 𝛼 ∉ Δ.
• Why? Again, suppose 𝛽 ∧ 𝛾 ∈ Δ. Since 𝛽 ∉ Δ or 𝛾 ∉ Δ, at least one of ¬𝛽 or ¬𝛾 is in Δ. Wlog,

assume ¬𝛽 ∈ Δ. Then, {¬𝛽, 𝛽 ∧ 𝛾} is a finite subset of Δ that is not satisfiable, which is a
contradiction of Δ being finitely satisfiable.

- Thus, ⟦𝛼⟧𝜈 = 1 iff 𝛼 ∈ Δ.

This shows that ⟦𝛼⟧𝜈 = 1 iff 𝛼 ∈ Δ, thus Δ is satisfiable by 𝜈. □

25 / 34

Compactness [5]

Corollary 1.1 : If Σ ⊨ 𝛼, then there is a finite Σ0 ⊆ Σ such that Σ0 ⊨ 𝛼.

Proof : Suppose that Σ0 ⊭ 𝛼 for every finite Σ0 ⊆ Σ.

Then, Σ0 ∪ {¬𝛼} is satisfiable for every finite Σ0 ⊆ Σ, that is, Σ ∪ {¬𝛼} is finitely satisfiable.

Then, by the compactness theorem, Σ ∪ {¬𝛼} is satisfiable, thus Σ ⊭ 𝛼, which contradicts the theorem
assumption that Σ ⊨ 𝛼. □

26 / 34

§4 Proof Systems

Natural Deduction
• Natural deduction is a proof system for propositional logic.

• Axioms:
‣ No axioms.

• Rules:
‣ Introduction: ∧-introduction, ∨-introduction, →-introduction, ¬-introduction.
‣ Elimination: ∧-elimination, ∨-elimination, →-elimination, ¬-elimination.
‣ Reduction ad Absurdum
‣ Law of Excluded Middle (note: forbidden in intuitionistic logic)

• Proofs are constructed by applying rules to assumptions and previously derived formulas.

𝐴1, …, 𝐴𝑛 ⊢ 𝐴⏟⏟⏟⏟⏟⏟⏟
sequent

Γ1 ⊢ (premise 1) Γ2 ⊢ (premise 2) …
rule name

Γ ⊢ (conclusion)

28 / 34

Inference Rules

 law of excluded middle
Γ ⊢ 𝜑 ∨ ¬𝜑

 assumption
Γ, 𝜑 ⊢ 𝜑

Γ ⊢ 𝛼 Γ ⊢ ¬𝛼 reduction ad absurdum
Γ ⊢ 𝛽

Γ ⊢ 𝛼 ∧ 𝛽 ∧-elimination
Γ ⊢ 𝛼

Γ ⊢ 𝛼 ∧ 𝛽 ∧-elimination
Γ ⊢ 𝛽

Γ ⊢ 𝛼 Γ ⊢ 𝛽 ∧-introduction
Γ ⊢ 𝛼 ∧ 𝛽

Γ ⊢ 𝛼1 ∨ 𝛼2 Γ, 𝛼1 ⊢ 𝛽 Γ, 𝛼2 ⊢ 𝛽 ∨-elim
Γ ⊢ 𝛽

Γ ⊢ 𝛼 ∨-intro
Γ ⊢ 𝛼 ∨ 𝛽

Γ ⊢ 𝛽 ∨-intro
Γ ⊢ 𝛼 ∨ 𝛽

Γ ⊢ 𝛼 Γ ⊢ 𝛼 → 𝛽 →-elimination
Γ ⊢ 𝛽

Γ, 𝛼 ⊢ 𝛽 →-introduction
Γ ⊢ 𝛼 → 𝛽

29 / 34

Example Derivation
Example : 𝑝 ∧ 𝑞, 𝑟⏟

premises

⊢ 𝑞 ∧ 𝑟⏟
conclusion

Proof tree: Linear proof (Fitch notation):

𝑝 ∧ 𝑞 ∧e
𝑞 𝑟 ∧i

𝑞 ∧ 𝑟

1. 𝑝 ∧ 𝑞 premise

2. 𝑟 premise

3. 𝑞 ∧e 1

4. 𝑞 ∧ 𝑟 ∧i 2,3

30 / 34

Exercises
1. ⊢ (𝑏 → 𝑐) → ((¬𝑏 → ¬𝑎) → (𝑎 → 𝑐))
2. 𝑎 ∨ 𝑏 ⊢ 𝑏 ∨ 𝑎
3. 𝑎 → 𝑐, 𝑏 → 𝑐, 𝑎 ∨ 𝑏 ⊢ 𝑐
4. ¬𝑎 ∨ 𝑏 ⊢ 𝑎 → 𝑏
5. 𝑎 → 𝑏 ⊢ ¬𝑎 ∨ 𝑏
6. 𝑎 → 𝑏, 𝑎 → ¬𝑏 ⊢ ¬𝑎
7. ¬𝑝 → ⊥ ⊢ 𝑝 (with allowed ¬¬E)
8. ⊢ 𝑝 ∨ ¬𝑝
9. 𝑎 ∨ 𝑏, 𝑏 ∨ 𝑐, ¬𝑏 ⊢ 𝑎 ∧ 𝑐

10. 𝑎 ∨ (𝑏 → 𝑎) ⊢ ¬𝑎 → ¬𝑏
11. 𝑝 → ¬𝑝 ⊢ ¬𝑝
12. 𝑎 → 𝑏, ¬𝑏 ⊢ ¬𝑎
13. ((𝑎 → 𝑏) → 𝑎) → 𝑎
14. ¬𝑎 → ¬𝑏 ⊢ 𝑏 → 𝑎
15. ⊢ (𝑎 → 𝑏) ∨ (𝑏 → 𝑎)

31 / 34

Soundness and Completeness
• A formal system is sound if every provable formula is true in all models.

‣ Weak soundness: “every provable formula is a tautology”.

If ⊢ 𝛼, then ⊨ 𝛼.

‣ Strong soundness: “every derivable (from Γ) formula is a logical consequence (of Γ)”.

If Γ ⊢ 𝛼, then Γ ⊨ 𝛼.

• A formal system is complete if every formula true in all models is provable.
‣ Weak completeness: “every tautology is provable”.

If ⊨ 𝛼, then ⊢ 𝛼.

‣ Strong completeness: “every logical consequence (of Γ) is derivable (from Γ)”.

If Γ ⊨ 𝛼, then Γ ⊢ 𝛼.

32 / 34

Some Random Links
• https://plato.stanford.edu/entries/proof-theoretic-semantics/
• https://math.stackexchange.com/a/3318545

33 / 34

https://plato.stanford.edu/entries/proof-theoretic-semantics/
https://math.stackexchange.com/a/3318545

TODO
Normal forms
Canonical normal forms
BDDs
Natural deduction
Sequent calculus
Fitch notation
Proof checkers
Proof assistants
Automatic theorem provers
Abstract proof systems
Intuitionistic logic
Soundnsess and completeness
Proof of soundness
Proof of completeness

34 / 34

	Propositional Logic
	Motivation
	Boolean Circuits and Propositional Logic
	What is Logic?
	Syntax
	Semantics

	Syntax of Propositional Logic
	Alphabet
	Well-Formed Formulas (WFFs)
	Conventions

	Semantics of Propositional Logic

	Foundations
	Truth Tables
	Normal Forms
	Logical Laws and Tautologies
	Completeness of Connectives
	Incompleteness of Connectives

	Semantical Aspects
	Validity, Satisfiability, Entailment
	Validity
	Satisfiability
	Entailment

	Implication vs Entailment
	Examples
	Duality of SAT vs VALID
	Solving SAT using Truth Tables
	Compactness

	Proof Systems
	Natural Deduction
	Inference Rules
	Example Derivation
	Exercises
	Soundness and Completeness
	Some Random Links
	TODO

