
Formal Methods in Software Engineering
Satisfiability Modulo Theories — Spring 2025
Konstantin Chukharev

§1 First-Order Theories

Motivation
Consider the signature Σ = ⟨Σ𝑆, Σ𝐹 ⟩ for a fragment of number theory:
• Σ𝑆 = {Nat}, Σ𝐹 = {0, 1, +, <}
• rank(0) = rank(1) = ⟨Nat⟩
• rank(+) = ⟨Nat, Nat, Nat⟩
• rank(<) = ⟨Nat, Nat, Bool⟩

1. Consider the Σ-sentence: ∀𝑥 : Nat. ¬(𝑥 < 𝑥)
• Is it valid, that is, true under all interpretations?
• No, e.g., if we interpret < as equals or divides.

2. Consider the Σ-sentence: ¬∃𝑥 : Nat. (𝑥 < 0)
• Is it valid?
• No, e.g., if we interpret Nat as the set of all integers.

3. Consider the Σ-sentence: ∀𝑥 : Nat.∀𝑦 : Nat.∀𝑧 : Nat. (𝑥 < 𝑦) ∧ (𝑦 < 𝑧) → (𝑥 < 𝑧)
• Is it valid?
• No, e.g., if we interpret < as the successor relation.

3 / 72

Motivation [2]

In practice, we often do not care about satisfiability or validity in general,
but rather with respect to a limited class of interpretations.

A practical reason:
• When reasoning in a particular application domain, we typically have specific data types/structures in

mind (e.g., integers, strings, lists, arrays, finite sets, …).
• More generally, we are typically not interested in arbitrary interpretations, but rather in specific ones.

Theories formalize this domain-specific reasoning: we talk about satisfiability and validity with respect to a
theory or “modulo a theory”.

A computational reason:
• The validity problem for FOL is undecidable in general.
• However, the validity problem for many restricted theories, is decidable.

4 / 72

First-Order Theories
Hereinafter, we assume that we have an infinite set of variables 𝑋.

Definition 1 (Theory) : A first-order theory 𝒯 is a pair¹ ⟨Σ, 𝑴⟩, where
• Σ = ⟨Σ𝑆, Σ𝐹 ⟩ is a first-order signature,
• 𝑴 is a class² of Σ-interpretations over 𝑋 that is closed under variable re-assignment.

Definition 2 : 𝑴 is closed under variable re-assignment if every Σ-interpretation that differs from one
in 𝑴 in the way it interprets the variables in 𝑋 is also in 𝑴 .

A theory limits the interpretations of Σ-formulas to those from 𝑴 .

¹Here, we use bold style for 𝑴 to denote that it is not a single model, but a collection of them.
²Class is a generalization of a set.

5 / 72

Theory Examples
Example : Theory of Real Arithmetic 𝒯RA = ⟨ΣRA, 𝑴RA⟩:
• Σ𝑆

RA = {Real}
• Σ𝐹

RA = {+, −, ×, ≤} ∪ {𝑞 | 𝑞 is a decimal numeral}
• All ℐ ∈ 𝑴RA interpret Real as the set of real numbers ℝ, each 𝑞 as the decimal number that it denotes,

and the function symbols in the usual way.

Example : Theory of Ternary Strings 𝒯TS = ⟨ΣTS, 𝑴TS⟩:
• Σ𝑆

TS = {String}
• Σ𝐹

TS = { ⋅ , <} ∪ {a, b, c}
• All ℐ ∈ 𝑴TS interpret String as the set {a, b, c}∗ of all finite strings over the characters {a, b, c},

symbol ⋅ as string concatenation (e.g., a ⋅ b = ab), and < as lexicographic order.

6 / 72

𝒯-interpretations

Definition 3 (Reduct) : Let Σ and Ω be two signatures over variables 𝑋, where Ω ⊇ Σ, that is,
Ω𝑆 ⊇ Σ𝑆 and Ω𝐹 ⊇ Σ𝐹 .

Let ℐ be an Ω-interpretation over 𝑋.

The reduct ℐΣ of ℐ to Σ is a Σ-interpretation obtained from ℐ by resticting it to the symbols in Σ.

Definition 4 (𝒯-interpretation) : Given a theory 𝒯 = ⟨Σ, 𝑴⟩, a 𝒯-interpretation is any
Ω-interpretation ℐ for some signature Ω ⊇ Σ such that ℐΣ ∈ 𝑴 .

Note : This definition allows us to consider the satisfiability in a theory 𝒯 = ⟨Σ, 𝑴⟩ of formulas that
contain sorts or function symbols not in Σ. These symbols are usually called uninterpreted (in 𝒯).

7 / 72

𝒯-interpretations [2]
Example : Consider again the theory of real arithmetic 𝒯RA = ⟨ΣRA, 𝑴RA⟩.

All ℐ ∈ 𝑴RA interpret Real as ℝ and function symbols as usual.

Which of the following interpretations are 𝒯RA-interpretations?

1. Realℐ1 = ℚ, symbols in Σ𝐹
RA interpreted as usual. ✗

2. Realℐ2 = ℝ, symbols in Σ𝐹
RA interpreted as usual, and Stringℐ2 = {0.5, 1.3}. ✓

3. Realℐ3 = ℝ, symbols in Σ𝐹
RA interpreted as usual, and logℐ3 is the successor function. ✓

8 / 72

𝒯-satisfiability, 𝒯-entailment, 𝒯-validity

Definition 5 (𝒯-satisfiability) : A Σ-formula 𝛼 is satisfiable in 𝒯, or 𝒯-satisfiable, if it is satisfied by
some 𝒯-interpretation ℐ.

Definition 6 (𝒯-entailment) : A set Γ of formulas 𝒯-entails a formula 𝛼, if every 𝒯-interpretation that
satisfies all formulas in Γ also satisfies 𝛼.

Definition 7 (𝒯-validity) : A formula 𝛼 is 𝒯-valid, if it is satisfied by all 𝒯-interpretations.

Note : A formula 𝛼 is 𝒯-valid iff ∅ ⊨ 𝛼.

Example : Which of the following ΣRA-formulas is satisfiable or valid in 𝒯RA?
1. (𝑥0 + 𝑥1 ≤ 0.5) ∧ (𝑥0 − 𝑥1 ≤ 2) satisfiable, falsifiable
2. ∀𝑥0. (𝑥0 + 𝑥1 ≤ 1.7) → (𝑥1 ≤ 1.7 − 𝑥0) satisfiable, valid
3. ∀𝑥0.∀𝑥1. (𝑥0 + 𝑥1 ≤ 1) unsatisfiable, falsifiable

9 / 72

FOL vs Theory
For every signature Σ, entailment and validity in “pure” FOL can be seen as entailment and validity in the
theory 𝒯FOL = ⟨Σ, 𝑴FOL⟩ where 𝑴FOL is the class of all possible Σ-interpretations.

• Pure first-order logic = reasoning over all possible interpretations.
• Reasoning modulo a theory = restricting interpretations with some domain constraints.
• Theories make automated reasoning feasible in many domains.

10 / 72

Axiomatization

Definition 8 (Axiomatic theory) : A first-order axiomatic theory 𝒯 is defined by a signature Σ and a
set 𝒜 of Σ-sentences, or axioms.

Definition 9 (𝒯-validity in axiomatic theory) : An Ω-formula 𝛼 is valid in an axiomatic theory 𝒯 if it
is entailed by the axioms of 𝒯, that is, every Ω-interpretation ℐ that satisfies 𝒜 also satisfies 𝛼.

Note : Axiomatic theories are a special case of the general definition (via 𝑴) of theories.
• Given an axiomatic theory 𝒯′ defined by Σ and 𝒜, we can define a theory 𝒯 = ⟨Σ, 𝑴⟩ where 𝑴 is the

class of all Σ-interpretations that satisfy all axioms in 𝒜.
• It is not hard to show that a formula 𝛼 is valid in 𝒯 iff it is valid in 𝒯′.

Note : Not all theories are first-order axiomatizable.

11 / 72

Non-Axiomatizable Theories
Note : Not all theories are first-order axiomatizable.

Example : Consider the theory 𝒯Nat of the natural numbers, with signature Σ with Σ𝑆 = {Nat}, Σ𝐹 =
{0, 𝑆, +, <}, and 𝑀 = {ℐ} where Natℐ = ℕ and Σ𝐹 is interpreted as usual.

Any set of axioms (for example, Peano axioms) for this theory is satisfied by non-standard models, e.g.,
interpretations ℐ′ where Natℐ′ includes other chains of elements besides the natural numbers.

However, these models falsify formulas that are valid in 𝒯Nat.

For example, “every number is either zero or a successor”: ∀𝑥. (𝑥 =. 0) ∨ ∃𝑦. (𝑥 =. 𝑆(𝑦)).
• true in the standard model, i.e. Natℐ = ℕ = {0, 1 ≔ 𝑆(0), 2 ≔ 𝑆(1), …}.
• false in non-standard models, e.g., Natℐ′ = {0, 1, 2, …} ∪ {𝜔, 𝜔 + 1, …}

‣ Intuitively, 𝜔 is “an infinite element”.
‣ The successor function still applies: 𝑆(𝜔) = 𝜔 + 1, 𝑆(𝜔 + 1) = 𝜔 + 2, etc.
‣ Even the addition and multiplication still works: 𝜔 + 3 = 𝑆(𝑆(𝑆(𝜔))), 𝜔 × 2 = 𝜔 + 𝜔.
‣ But 𝜔 is larger than all standard numbers: 𝜔 > 0, 𝜔 > 1, …

12 / 72

Peano Arithmetic

Definition 10 : Peano arithmetic 𝒯PA, or first-order arithmetic, is the axiomatic theory of natural
numbers with signature Σ𝐹

PA = {0, 𝑆, +, ×, =} and Peano axioms:
1. ∀𝑥. (𝑆(𝑥) ≠ 0) (zero)
2. ∀𝑥.∀𝑦. (𝑆(𝑥) = 𝑆(𝑦)) → (𝑥 = 𝑦) (successor)
3. 𝐹[0] ∧ (∀𝑥. 𝐹 [𝑥] → 𝐹[𝑥 + 1]) → ∀𝑥. 𝐹 [𝑥] (induction)
4. ∀𝑥. (𝑥 + 0 = 𝑥) (plus zero)
5. ∀𝑥.∀𝑦. (𝑥 + 𝑆(𝑦) = 𝑆(𝑥 + 𝑦)) (plus successor)
6. ∀𝑥. (𝑥 × 0 = 0) (times zero)
7. ∀𝑥.∀𝑦. (𝑥 × 𝑆(𝑦) = (𝑥 × 𝑦) + 𝑥) (times successor)

Axiom (induction) is the induction axiom schema. It stands for an infinite set of axioms, one for each
ΣPA-formula 𝐹 with one free variable. The notation 𝐹[𝛼] means that 𝐹 contains 𝛼 as a sub-formula.

The intended interpretation (standard models) of 𝒯PA have the domain ℕ and the usual interpretations of
the function symbols as 0ℕ, 𝑆ℕ, +ℕ, and ×ℕ.

13 / 72

Presburger Arithmetic
Note : Satisfiability and validity in 𝒯PA is undecidable. Therefore, we need a more restricted theory of
arithmetic that does not include multiplication.

Definition 11 : Presburger arithmetic 𝒯ℕ is the axiomatic theory of natural numbers with signature
Σ𝐹

ℕ = {0, 𝑆, +, =} and the subset of Peano axioms:
1. ∀𝑥. (𝑆(𝑥) ≠ 0) (zero)
2. ∀𝑥.∀𝑦. (𝑆(𝑥) = 𝑆(𝑦)) → (𝑥 = 𝑦) (successor)
3. 𝐹[0] ∧ (∀𝑥. 𝐹 [𝑥] → 𝐹[𝑥 + 1]) → ∀𝑥. 𝐹 [𝑥] (induction)
4. ∀𝑥. (𝑥 + 0 = 𝑥) (plus zero)
5. ∀𝑥.∀𝑦. (𝑥 + 𝑆(𝑦) = 𝑆(𝑥 + 𝑦)) (plus successor)

Note : Presburger arithmetic is decidable.

14 / 72

Completeness of Theories

Definition 12 : A Σ-theory 𝒯 is complete if for every Σ-sentence 𝛼, either 𝛼 or ¬𝛼 is valid in 𝒯.

Note : In a complete Σ-theory, every Σ-sentence is either valid or unsatisfiable.

Example : Any theory 𝒯 = ⟨Σ, 𝑴⟩ where all interpretations in 𝑴 only differ in how they interpret the
variables (e.g., 𝒯RA) is complete.

Example : The axiomatic (mono-sorted) theory of monoids with Σ𝐹 = { ⋅ , 𝜀} and axioms

∀𝑥.∀𝑦.∀𝑧. (𝑥 ⋅ 𝑦) ⋅ 𝑧 =. 𝑥 ⋅ (𝑦 ⋅ 𝑧) ∀𝑥. (𝑥 ⋅ 𝜀 =. 𝑥) ∀𝑥. (𝜀 ⋅ 𝑥 =. 𝑥)

is incomplete. For example, the sentence ∀𝑥.∀𝑦. (𝑥 ⋅ 𝑦 =. 𝑦 ⋅ 𝑥) is true in some monoids (e.g. the addition of
integers is commutative) but false in others (e.g. the concatenation of strings is not commutative).

15 / 72

Completeness of Theories [2]
Example : The axiomatic (mono-sorted) theory of dense linear orders without endpoints with Σ𝐹 = {≺}
and the following axioms is complete.

∀𝑥.∀𝑦.(𝑥 ≺ 𝑦) → ∃𝑧. ((𝑥 ≺ 𝑧) ∧ (𝑧 ≺ 𝑦)) (dense)

∀𝑥.∀𝑦. ((𝑥 ≺ 𝑦) ∨ (𝑦 ≺ 𝑥) ∨ (𝑥 =. 𝑦)) (linear)

∀𝑥. ¬(𝑥 ≺ 𝑥) ∀𝑥.∀𝑦.∀𝑧. ((𝑥 ≺ 𝑦) ∧ (𝑦 ≺ 𝑧) → (𝑥 ≺ 𝑧)) (orders)

∀𝑥.∃𝑦. (𝑦 ≺ 𝑥) ∀𝑥.∃𝑦. (𝑥 ≺ 𝑦) (without endpoints)

16 / 72

Decidability
Recall that a set 𝐴 is decidable if there exists a terminating procedure that, given an input element 𝑎,
returns (after finite time) either “yes” if 𝑎 ∈ 𝐴 or “no” if 𝑎 ∉ 𝐴.

Definition 13 : A theory 𝒯 = ⟨Σ, 𝑴⟩ is decidable if the set of all 𝒯-valid Σ-formulas is decidable.

Definition 14 : A fragment of 𝒯 is a syntactically-restricted subset of 𝒯-valid Σ-formulas.

Example : The quantifier-free fragment of 𝒯 is the set of all 𝒯-valid Σ-formulas without quantifiers.

Example : The linear fragment of 𝒯RA is the set of all 𝒯-valid ΣRA-formulas without multiplication (×).

17 / 72

Axiomatizability

Definition 15 : A theory 𝒯 = ⟨Σ, 𝑴⟩ is recursively axiomatizable if 𝑴 is the class of all
interpretations satisfying a decidable set of first-order axioms 𝒜.

Theorem 1 (Lemma): Every recursively axiomatizable theory 𝒯 admits a procedure 𝐸𝒯 that
enumerates all 𝒯-valid formulas.

Theorem 2 : For every complete and recursively axiomatizable theory 𝒯, validity in 𝒯 is decidable.

Proof : Given a formula 𝛼, use 𝐸𝒯 to enumerate all valid formulas. Since 𝒯 is complete, either 𝛼 or ¬𝛼
will eventually (after finite time) be produced by 𝐸𝒯. □

18 / 72

§2 Introduction to SMT

Common Theories in SMT
Satisfiability Modulo Theories (SMT) traditionally focuses on theories with decidable quantifier-free
fragments.

SMT is concerned with (un)satisfiability, but recall that a formula 𝛼 is 𝒯-valid iff ¬𝛼 is 𝒯-unsatisfiable.

Checking the (un)satisfiability of quantifier-free formulas in main background theories efficiently has a
large number of applications in:

• hardware and software verification
• model checking
• symbolic execution
• compiler validation
• type checking

• planning and scheduling
• software synthesis
• cyber-security
• verifiable machine learning
• analysis of biological systems

Further, we are going to study:
• A few of those theories and their decision procedures.
• Proof systems to reason modulo theories automatically.

20 / 72

From Quantifier-Free Formulas to Conjunctions of Literals

Theorem 3 : The satisfiability of quantifier-free formulas in a theory 𝒯 is decidable iff the satisfiability
in 𝒯 of conjunctions of literals is decidable.

Here, literal is an atom or its negation. For example: (𝑎 =. 𝑏), ¬(𝑎 + 1 < 𝑏), (𝑓(𝑏) =. 𝑔(𝑓(𝑎))).

Proof : A quantifier-free formula can be transformed into disjunctive normal form (DNF), and its
satisfiability reduces to checking satisfiability of conjunctions of literals. Conversely, a conjunction of
literals is a special case of a quantifier-free formula. Thus, the two satisfiability problems are equivalent. □

21 / 72

Theory Solvers

Definition 16 (𝒯-solver) : A theory solver, or 𝒯-solver, is a specialized decision procedure for the
satisfiability of conjunctions of literals in a theory 𝒯.

Set of literals 𝒯-solver

Consistent
(SAT)

Inconsistent
(UNSAT)

22 / 72

Theory of Uninterpreted Functions

Definition 17 : Given a signature Σ, the most general theory consists of the class of all
Σ-interpretations. In fact, this is a family of theories parameterized by the signature Σ.

It is known as the theory of equality with uninterpreted functions 𝒯EUF, or the empty theory, since it
contains no sentences.

Example : (𝑎 =. 𝑏) ∧ (𝑓(𝑎) =. 𝑏) ∧ ¬(𝑔(𝑎) =. 𝑔(𝑓(𝑎))) Is this formula satisfiable in 𝒯EUF?

Both validity and satisfiability are undecidable in 𝒯EUF.
• Validity in 𝒯EUF is semi-decidable — this is just a validity in FOL.
• Since a formula 𝛼 is 𝒯-satisfiable iff ¬𝛼 is not 𝒯-valid, 𝒯EUF-satisfiability is co-recognizable.

However, the satisfiability of conjunctions of 𝒯EUF-literals is decidable, in polynomial time, using the
congruence closure algorithm.

23 / 72

Theory of Real Arithmetic

Definition 18 : The theory of real arithmetic 𝒯RA is a theory of inequalities over the real numbers.
• Σ𝑆 = {Real}
• Σ𝐹 = {+, −, ×, <} ∪ {𝑞 | 𝑞 is a decimal numeral}
• 𝑴 is the class of interpretations that interpret Real as the set of real numbers ℝ, and the function

symbols in the usual way.

Satisfiability in the full 𝒯RA is decidable (in worst-case doubly-exponential time).

Restricted fragments of 𝒯RA can be decided more efficiently.

Example : Quantifier-free linear real arithmetic (QF_LRA) is the theory of linear inequalities over the reals,
where × can only be used in the form of multiplication by constants (decimal numerals).

The satisfiability of conjunctions of literals in QF_LRA is decidable in polynomial time.

24 / 72

Theory of Integer Arithmetic

Definition 19 : The theory of integer arithmetic 𝒯IA is a theory of inequalities over the integers.
• Σ𝑆 = {Int}
• Σ𝐹 = {+, −, ×, <} ∪ {𝑛 | 𝑛 is an integer numeral}
• 𝑴 is the class of interpretations that interpret Int as the set of integers ℤ, and the function symbols

in the usual way.

Satisfiability in 𝒯IA is not even semi-decidable!

Satisfiability of quantifier-free Σ-formulas in 𝒯IA is undecidable as well.

Linear integer arithmetic (LIA, also known as Presburger arithmetic) is decidable, but not efficiently
(in worst-case triply-exponential time). Its quantifier-free fragment (QF_LIA) is NP-complete.

25 / 72

Theory of Arrays with Extensionality

Definition 20 : The theory of arrays 𝒯AX is useful for modelling RAM or array data structures.
• Σ𝑆 = {A, I, E} (arrays, indices, elements)
• Σ𝐹 = {read, write}, where rank(read) = ⟨A, I, E⟩ and rank(write) = ⟨A, I, E, A⟩

Let 𝑎 be a variable of sort A, variable 𝑖 of sort I, and variable 𝑣 of sort E.
• read(𝑎, 𝑖) denotes the value stored in array 𝑎 at index 𝑖.
• write(𝑎, 𝑖, 𝑣) denotes the array that stores value 𝑣 at index 𝑖 and is otherwise identical to 𝑎.

Example : read(write(𝑎, 𝑖, 𝑣), 𝑖) =. E 𝑣
• Is this formula intuitively valid/satisfiable/unsatisfiable in 𝒯A?

Example : ∀𝑖. (read(𝑎, 𝑖) =. E read(𝑎′, 𝑖)) → (𝑎 =. A 𝑎′)
• Is this formula intuitively valid/satisfiable/unsatisfiable in 𝒯A?

26 / 72

Theory of Arrays with Extensionality [2]

Definition 21 : The theory of arrays 𝒯AX = ⟨Σ, 𝑴⟩ is finitely axiomatizable.

𝑴 is the class of interpretations that satisfy the following axioms:
1. ∀𝑎.∀𝑖.∀𝑣. (read(write(𝑎, 𝑖, 𝑣), 𝑖) =. E 𝑣)
2. ∀𝑎.∀𝑖.∀𝑗.∀𝑣. ¬(𝑖 =. I 𝑗) → (read(write(𝑎, 𝑖, 𝑣), 𝑗) =. E read(𝑎, 𝑗))
3. ∀𝑎.∀𝑏. (∀𝑖. (read(𝑎, 𝑖) =. E read(𝑏, 𝑖))) → (𝑎 =. A 𝑏)

Note : The last axiom is called extensionality axiom. It states that two arrays are equal if they have the
same values at all indices. It can be omitted to obtain a theory of arrays without extensionality 𝒯A.

Validity and satisfiability in 𝒯AX is undecidable.

There are several decidable fragments of 𝒯A.

27 / 72

Survey of Decidability and Complexity

Theory Description Full QF Full complexity QFC complexity
PL Propositional Logic — yes NP-complete Θ(𝑛)
𝒯EUF Equality no yes undecidable 𝒪(𝑛 log 𝑛)
𝒯PA Peano Arithmetic no no undecidable undecidable
𝒯ℕ Presburger Arithmetic yes yes Ω(22𝑛), 𝒪(222𝑘𝑛

) NP-complete

𝒯ℤ Linear Integers (LIA) yes yes Ω(22𝑛), 𝒪(222𝑘𝑛
) NP-complete

𝒯ℝ Reals yes yes 𝒪(22𝑘𝑛) 𝒪(22𝑘𝑛)
𝒯ℚ Linear Rationals yes yes Ω(2𝑛), 𝒪(22𝑘𝑛) PTIME
𝒯RDS Recursive Data Structures no yes undecidable 𝒪(𝑛 log 𝑛)
𝒯ARDS Acyclic RDS yes yes not elementary recursive Θ(𝑛)
𝒯A Arrays no yes undecidable NP-complete
𝒯AX Arrays with Extensionality no yes undecidable NP-complete

28 / 72

Survey of Decidability and Complexity [2]
Legend for the table:
• “Full” denotes the decidability of a complete theory with quantifiers.
• “QF” denotes the decidability of a quantifier-free theory.
• “Full complexity” denotes the complexity of the satisfiability in a complete theory with quantifiers.
• “QFC complexity” denotes the complexity of the satisfiability in a quantifier-free conjunctive fragment.
• For complexities, 𝑛 is the size of the input formula, 𝑘 is some positive integer.
• “Not elementary recursive” means the runtime cannot be bounded by a fixed-height stack of exponentials.

29 / 72

§3 Difference Logic

Difference Logic

Definition 22 : Difference logic (DL) is a fragment of linear integer arithmetic consisting of
conjunctions of literals of the very restricted form:

𝑥 − 𝑦 ⨝ 𝑐

where 𝑥 and 𝑦 are integer variables, 𝑐 is a numeral, and ⨝ ∈ {=, <, ≤, >, ≥}.

A solver for difference logic consists of three steps:
1. Literals normalization.
2. Conversion to a graph.
3. Cycle detection.

31 / 72

Decision Procedure for DL
Step 1: Rewrite each literal using ≤ by applying the following rules:
1. (𝑥 − 𝑦 = 𝑐) ⟶ (𝑥 − 𝑦 ≤ 𝑐) ∧ (𝑥 − 𝑦 ≥ 𝑐)
2. (𝑥 − 𝑦 ≥ 𝑐) ⟶ (𝑦 − 𝑥 ≤ −𝑐)
3. (𝑥 − 𝑦 > 𝑐) ⟶ (𝑦 − 𝑥 < −𝑐)
4. (𝑥 − 𝑦 < 𝑐) ⟶ (𝑥 − 𝑦 ≤ 𝑐 − 1)

Step 2: Construct a weighted directed graph 𝐺 with a vertex for each variable and an edge 𝑥 →
𝑐

𝑦 for each
literal (𝑥 − 𝑦 ≤ 𝑐).

Step 3: Check for negative cycles in 𝐺.
• Use, for example, the Bellman-Ford algorithm.
• If 𝐺 contains a negative cycle, the set of literals is inconsistent (UNSAT).
• Otherwise, the set of literals is consistent (SAT).

32 / 72

Difference Logic Example
Consider the following set of difference logic literals:

(𝑥 − 𝑦 = 5) ∧ (𝑧 − 𝑦 ≥ 2) ∧ (𝑧 − 𝑥 > 2) ∧ (𝑤 − 𝑥 = 2) ∧ (𝑧 − 𝑤 < 0)

Normalize the literals:
• (𝑥 − 𝑦 = 5) ⟹ (𝑥 − 𝑦 ≤ 5) ∧ (𝑦 − 𝑥 ≤ −5)
• (𝑧 − 𝑦 ≥ 2) ⟹ (𝑦 − 𝑧 ≤ −2)
• (𝑧 − 𝑥 > 2) ⟹ (𝑥 − 𝑧 ≤ −3)
• (𝑤 − 𝑥 = 2) ⟹ (𝑤 − 𝑥 ≤ 2) ∧ (𝑥 − 𝑤 ≤ −2)
• (𝑧 − 𝑤 < 0) ⟹ (𝑧 − 𝑤 ≤ −1)

5

−5

−2

2

−3

−2

−1

𝑥

𝑦

𝑤

𝑧
UNSAT because of the negative cycle: 𝑥 ⟶

−3
𝑧 ⟶

−1
𝑤 ⟶

2
𝑥.

33 / 72

§4 Equiality

Theory of Equality with Uninterpreted Functions

Definition 23 : The theory of equality with uninterpreted functions 𝒯EUF is defined by the signature
Σ𝐹 = {=. , 𝑓, 𝑔, ℎ, …} (interpreted equality and uninterpreted functions) and the following axioms:
1. ∀𝑥. 𝑥 =. 𝑥 (reflexivity)
2. ∀𝑥.∀𝑦. (𝑥 =. 𝑦) → (𝑦 =. 𝑥) (symmetry)
3. ∀𝑥.∀𝑦.∀𝑧. (𝑥 =. 𝑦) ∧ (𝑦 =. 𝑧) → (𝑥 =. 𝑧) (transitivity)
4. ∀𝒙.∀𝒚. (𝒙 = 𝒚) → (𝑓(𝒙) =. 𝑓(𝒚)) (function congruence)

35 / 72

Flattening

Definition 24 : A literal is flat if it is of the form:
• 𝑥 =. 𝑦
• ¬(𝑥 =. 𝑦)
• 𝑥 =. 𝑓(𝒛)

where 𝑥 and 𝑦 are variables, 𝑓 is a function symbol, and 𝒛 is a tuple of 0 or more variables.

Note : Any set of literals can be converted to an equisatisfiable set of flat literals by introducing new
variables and equating non-equational atoms to true.

Example : Consider the set of literals: {𝑥 + 𝑦 > 0, 𝑦 =. 𝑓(𝑔(𝑧))}.

We can convert it to an equisatisfiable set of flat literals by introducing fresh variables 𝑣𝑖:

{ 𝑣1 =. 𝑣2 > 𝑣3, 𝑣1 =. true, 𝑣2 =. 𝑥 + 𝑦, 𝑣3 =. 0, 𝑦 =. 𝑓(𝑣4), 𝑣4 =. 𝑔(𝑧) }

Hereinafter, we will assume that all literals are flat.

36 / 72

Notation and Assumptions
• We abbreviate ¬(𝑠 =. 𝑡) with 𝑠 =. 𝑡.

• For tuples 𝒖 = ⟨𝑢1, …, 𝑢𝑛⟩ and 𝒗 = ⟨𝑣1, …, 𝑣𝑛⟩, we abbreviate (𝑢1 =. 𝑣1) ∧ … ∧ (𝑢𝑛 =. 𝑣𝑛) with 𝒖 = 𝒗.

• Γ is used to refer to the “current” proof state in rule premises.

• Γ, 𝑠 =. 𝑡 is an abbreviation for Γ ∪ {𝑠 =. 𝑡}.

• If applying a rule 𝑅 does not change Γ, then 𝑅 is not applicable to Γ, that is, Γ is irreducible w.r.t. 𝑅.

37 / 72

Satisfiability Proof System for QF_UF
Let QF_UF be the quantifier-free fragment of FOL over some signature Σ.

Below is a simple satisfiability proof system 𝑅UF for QF_UF:

𝑥 occurs in Γ
Refl

Γ ≔ Γ, 𝑥 =. 𝑥

𝑥 =. 𝑓(𝒖) ∈ Γ 𝑦 =. 𝑓(𝒗) ∈ Γ 𝒖 = 𝒗 ∈ Γ
Cong

Γ ≔ Γ, 𝑥 =. 𝑦
𝑥 =. 𝑦 ∈ Γ

Symm
Γ ≔ Γ, 𝑦 =. 𝑥

𝑥 =. 𝑦 ∈ Γ 𝑥 =. 𝑦 ∈ Γ
Contr

UNSAT
𝑥 =. 𝑦 ∈ Γ 𝑦 =. 𝑧 ∈ Γ

Trans
Γ ≔ Γ, 𝑥 =. 𝑧

No other rules apply
SAT

SAT

Is 𝑅UF sound?

Is 𝑅UF terminating?

38 / 72

Example Derivation in 𝑅UF

𝑥 occurs in Γ
Refl

Γ ≔ Γ, 𝑥 =. 𝑥

𝑥 =. 𝑦 ∈ Γ 𝑦 =. 𝑧 ∈ Γ
Trans

Γ ≔ Γ, 𝑥 =. 𝑧

𝑥 =. 𝑦 ∈ Γ 𝑥 =. 𝑦 ∈ Γ
Contr

UNSAT

𝑥 =. 𝑦 ∈ Γ
Symm

Γ ≔ Γ, 𝑦 =. 𝑥

𝑥 =. 𝑓(𝒖) ∈ Γ 𝑦 =. 𝑓(𝒗) ∈ Γ 𝒖 = 𝒗 ∈ Γ
Cong

Γ ≔ Γ, 𝑥 =. 𝑦

No other rules apply
SAT

SAT

Example : Determine the satisfiability of the following set of literals: 𝑎 =. 𝑓(𝑓(𝑎)), 𝑎 =. 𝑓(𝑓(𝑓(𝑎))),
𝑔(𝑎, 𝑓(𝑎)) =. 𝑔(𝑓(𝑎), 𝑎). Flatten the literals and construct the following proof:

𝑎 =. 𝑓(𝑎1), 𝑎1 =. 𝑓(𝑎), 𝑎 =. 𝑓(𝑎2), 𝑎2 =. 𝑓(𝑎1), 𝑎3 =. 𝑎4, 𝑎3 =. 𝑔(𝑎, 𝑎1), 𝑎4 =. 𝑔(𝑎1, 𝑎) Refl
𝑎1 =. 𝑎1 Cong applied to 𝑎 =. 𝑓(𝑎1), 𝑎2 =. 𝑓(𝑎1), 𝑎1 =. 𝑎1𝑎 =. 𝑎2 Cong applied to 𝑎1 =. 𝑓(𝑎), 𝑎 =. 𝑓(𝑎2), 𝑎 =. 𝑎2𝑎1 =. 𝑎 Symm
𝑎 =. 𝑎1 Cong applied to 𝑎3 =. 𝑔(𝑎, 𝑎1), 𝑎4 =. 𝑔(𝑎1, 𝑎), 𝑎 =. 𝑎1, 𝑎1 =. 𝑎
𝑎3 =. 𝑎4 Contr applied to 𝑎3 =. 𝑎4, 𝑎3 =. 𝑎4UNSAT

39 / 72

Soundness of 𝑅UF

Theorem 4 (Refutation soundness) : A literal set Γ0 is unsatisfiable if 𝑅UF derives UNSAT from it.

Proof : All rules except SAT are satisfiability-preserving.

If a derivation from Γ0 ends with UNSAT, then Γ0 must be unsatisfiable. □

Theorem 5 (Solution soundness) : A literal set Γ0 is satisfiable if 𝑅UF derives SAT from it.

Proof : Let Γ be a proof state to which SAT applies. From Γ, we can construct an interpretation ℐ that
satisfies Γ0. Let 𝑠 ∼ 𝑡 iff (𝑠 =. 𝑡) ∈ Γ. One can show that ∼ is an equivalence relation.

Let the domain of ℐ be the equivalence classes 𝐸1, …, 𝐸𝑘 of ∼.
• For every variable or a constant 𝑡, let 𝑡ℐ = 𝐸𝑖 if 𝑡 ∈ 𝐸𝑖 for some 𝑖. Otherwise, let 𝑡ℐ = 𝐸1.
• For every unary function symbol 𝑓 , and equivalence class 𝐸𝑖, let 𝑓ℐ be such that 𝑓ℐ(𝐸𝑖) = 𝐸𝑗 if

𝑓(𝑡) ∈ 𝐸𝑗 for some 𝑡 ∈ 𝐸𝑖. Otherwise, let 𝑓ℐ(𝐸𝑖) = 𝐸1. Define 𝑓ℐ for non-unary 𝑓 similarly.

We can show that ℐ ⊨ Γ. This means that ℐ models Γ0 as well since Γ0 ⊆ Γ. □
40 / 72

Termination in 𝑅UF

Theorem 6 : Every derivation strategy for 𝑅UF terminates.

Proof : 𝑅UF adds to the current state Γ only equalities between variables of Γ0.

So, at some point it will run out of new equalities to add. □

41 / 72

Completeness of 𝑅UF

Theorem 7 (Refutation completeness) : Every derivation strategy applied to an unsatisfiable state Γ0
ends with UNSAT.

Proof : Let Γ0 be an unsatisfiable state. Suppose there was a derivation from Γ0 that did not end with
UNSAT. Then, by the termination theorem, it would have to end with SAT. But then 𝑅UF would be not be
solution sound. □

Theorem 8 (Solution completeness) : Every derivation strategy applied to a satisfiable state Γ0 ends
with SAT.

Proof : Let Γ0 be a satisfiable state. Suppose there was a derivation from Γ0 that did not end with SAT.
Then, by the termination theorem, it would have to end with UNSAT. But then 𝑅UF would be not be
refutation sound. □

42 / 72

§5 Arrays

Theory of Arrays

Definition 25 : The theory of arrays 𝒯AX is defined by the signature Σ𝑆 = {A, I, E} (arrays, indices,
elements), Σ𝐹 = {read, write} and the following axioms:
1. ∀𝑎.∀𝑖.∀𝑣. (read(write(𝑎, 𝑖, 𝑣), 𝑖) =. E 𝑣)
2. ∀𝑎.∀𝑖.∀𝑗.∀𝑣. ¬(𝑖 =. I 𝑗) → (read(write(𝑎, 𝑖, 𝑣), 𝑗) =. E read(𝑎, 𝑗))
3. ∀𝑎.∀𝑏. (∀𝑖. (read(𝑎, 𝑖) =. E read(𝑏, 𝑖))) → (𝑎 =. A 𝑏)

44 / 72

Example
void ReadBlock(int data[], int x, int len) {
 int i = 0;
 int next = data[0];
 for (; i < next && i < len; i = i + 1) {
 if (data[i] == x)
 break;
 else
 Process(data[i]);
 }
 assert(i < len);
}

One pass through this code can be translated into the following 𝒯A formula:

(i =. 0) ∧ (next =. read(data, 0)) ∧ (i < next) ∧
∧ (i < len) ∧ (read(data, i) =. 𝑥) ∧ ¬(i < len)

45 / 72

Satisfiability Proof System for QF_AX
The satisfiability proof system 𝑅AX for 𝒯AX extends the proof system 𝑅UF for 𝒯UF with the following rules:

𝑏 =. write(𝑎, 𝑖, 𝑣) ∈ Γ
RIntro1

Γ ≔ Γ, 𝑣 =. read(𝑏, 𝑖)

𝑏 =. write(𝑎, 𝑖, 𝑣) ∈ Γ 𝑢 =. read(𝑥, 𝑗) ∈ Γ 𝑥 ∈ {𝑎, 𝑏}
RIntro2

Γ ≔ Γ, 𝑖 =. 𝑗 Γ ≔ Γ, 𝑖 =. 𝑗, 𝑢 =. read(𝑎, 𝑗), 𝑢 =. read(𝑏, 𝑗)

𝑎 =. 𝑏 ∈ Γ 𝑎 and 𝑏 are arrays
Ext

Γ ≔ Γ, 𝑢 =. 𝑣, 𝑢 =. read(𝑎, 𝑘), 𝑣 =. read(𝑏, 𝑘)

• RIntro1: After writing 𝑣 at index 𝑖, the reading at the same index 𝑖 gives us back the value 𝑣.
• RIntro2: After writing 𝑣 in 𝑎 at index 𝑖, the reading from 𝑎 or 𝑏 at index 𝑗 splits in two cases:

(1) 𝑖 equals 𝑗, (2) 𝑎 and 𝑏 have the same value 𝑢 at position 𝑗.
• Ext: If two arrays 𝑎 and 𝑏 are distinct, they must differ at some index 𝑘.

46 / 72

Example Derivation in 𝑅AX

𝑏 =. write(𝑎, 𝑖, 𝑣) ∈ Γ
RIntro1

Γ ≔ Γ, 𝑣 =. read(𝑏, 𝑖)

𝑎 =. 𝑏 ∈ Γ 𝑎 and 𝑏 are arrays
Ext

Γ ≔ Γ, 𝑢 =. 𝑣, 𝑢 =. read(𝑎, 𝑘), 𝑣 =. read(𝑏, 𝑘)

𝑏 =. write(𝑎, 𝑖, 𝑣) ∈ Γ 𝑢 =. read(𝑥, 𝑗) ∈ Γ 𝑥 ∈ {𝑎, 𝑏}
RIntro2

Γ ≔ Γ, 𝑖 =. 𝑗 Γ ≔ Γ, 𝑖 =. 𝑗, 𝑢 =. read(𝑎, 𝑗), 𝑢 =. read(𝑏, 𝑗)

Example : Determine the satisfiability of {write(𝑎1, 𝑖, read(𝑎1, 𝑖)) =. write(𝑎2, 𝑖, read(𝑎2, 𝑖)), 𝑎1 =. 𝑎2}.

First, flatten the literals:

{write(𝑎1, 𝑖, read(𝑎1, 𝑖)) =. write(𝑎2, 𝑖, read(𝑎2, 𝑖))} ⟶
⟶ {𝑎′

1 =. 𝑎′
2, 𝑎′

1 =. write(𝑎1, 𝑖, read(𝑎2, 𝑖)), 𝑎′
2 =. write(𝑎2, 𝑖, read(𝑎1, 𝑖)), 𝑎1 =. 𝑎2} ⟶

⟶ {𝑎′
1 =. 𝑎′

2, 𝑎′
1 =. write(𝑎1, 𝑖, 𝑣2), 𝑣2 =. read(𝑎2, 𝑖), 𝑎′

2 =. write(𝑎2, 𝑖, 𝑣1), 𝑣1 =. read(𝑎1, 𝑖), 𝑎1 =. 𝑎2}

47 / 72

Example Derivation in 𝑅AX [2]
1. 𝑎′

1 =. 𝑎′
2, 𝑎′

1 =. write(𝑎1, 𝑖, 𝑣2), 𝑣2 =. read(𝑎2, 𝑖), 𝑎′
2 =. write(𝑎2, 𝑖, 𝑣1), 𝑣1 =. read(𝑎1, 𝑖), 𝑎1 =. 𝑎2

2. (by Refl) 𝑎1 =. 𝑎1
3. (by Refl) 𝑎2 =. 𝑎2
4. (by Ext) 𝑢1 =. 𝑢2, 𝑢1 =. read(𝑎1, 𝑛), 𝑢2 =. read(𝑎2, 𝑛)
5. (by RIntro2) split

6. 𝑖 =. 𝑛
7. (by Cong) 𝑣1 =. 𝑢1
8. (by Symm) 𝑢1 =. 𝑣1
9. (by Cong) 𝑣2 =. 𝑢2

10. (by RIntro1) 𝑣2 =. read(𝑎′
1, 𝑖)

11. (by RIntro1) 𝑣1 =. read(𝑎′
2, 𝑖)

12. (by Refl) 𝑖 =. 𝑖
13. (by Cong) 𝑣1 =. 𝑣2
14. (by Trans) 𝑢1 =. 𝑢2
15. (by Contr) UNSAT

6. 𝑖 =. 𝑛, 𝑢1 =. read(𝑎′
1, 𝑛)

7. (by RIntro2) split

8. 𝑖 =. 𝑛
9. (by Contr) UNSAT

8. 𝑖 =. 𝑛, 𝑢2 =. read(𝑎′
2, 𝑛)

9. (by Relf) 𝑛 =. 𝑛
10. (by Cong) 𝑢1 =. 𝑢2
11. (by Contr) UNSAT

48 / 72

§6 Arithmetic

Theory of Real Arithmetic

Definition 26 : The theory of real arithmetic 𝒯RA is defined by the signature Σ𝑆
RA = {Real},

Σ𝐹
RA = {+, −, ×, ≤} ∪ {𝑞 | 𝑞 is a decimal numeral} and the class of interpretations 𝑴RA that

interpret Real as the set of real numbers ℝ, and the function symbols in the usual way.

Quantifier-free linear real arithmetic (QF_LRA) is the theory of linear inequalities over the reals, where × can
only be used in the form of multiplication by constants (decimal numerals).

50 / 72

Linear Programming

Definition 27 : A linear program (LP) consists of:
1. An 𝑚 × 𝑛 matrix 𝑨, the contraint matrix.
2. An 𝑚-dimensional vector 𝒃.
3. An 𝑛-dimensional vector 𝒄, the objective function.

Let 𝒙 be a vector of 𝑛 variables.

Goal: Find a solution 𝒙 that maximizes 𝒄𝑇 𝒙 subject to the linear constraints 𝑨𝒙 ≤ 𝒃 (and³ 𝒙 ≥ 𝟎).

Note : All bold-styled symbols denote vectors or matrices, e.g., 𝒙, 𝑨, 𝟎.

³The constraint 𝒙 ≥ 𝟎 is introduced when LP is expressed in standard form, explained later in these slides.
51 / 72

Example and Terminology
Example : Maximize 2𝑥2 − 𝑥1 subject to:

𝑥1 + 𝑥2 ≤ 3
2𝑥1 − 𝑥2 ≤ −5

Here, 𝒙 = [𝑥1
𝑥2

], 𝑨 = [1
2

1
−1], 𝒃 = [3

−5], 𝒄 = [−1
2].

Find 𝒙 that maximizes 𝒄𝑇 𝒙 subject to 𝑨𝒙 ≤ 𝒃.

Definition 28 : An assignment of 𝒙 is a feasible solution if it satisfies 𝑨𝒙 ≤ 𝒃.

• Is 𝒙 = ⟨0, 0⟩ a feasible solution? ✗
• Is 𝒙 = ⟨−2, 1⟩ a feasible solution? ✓

Definition 29 : For a given assignment 𝒙, the value 𝒄𝑇 𝒙 is the objective value, or cost, of 𝒙.

• What is the objective value of 𝒙 = ⟨−2, 1⟩?
52 / 72

Example and Terminology [2]

Definition 30 : An optimal solution is a feasible solution with a maximal objective value among all
feasible solutions.

Definition 31 : If a linear program has no feasible solutions, it is infeasible.

Definition 32 : The linear program is unbounded if the objective value of the optimal solution is ∞.

53 / 72

Geometric Interpretation

Definition 33 : A polytope is a generalization of 3-dimensional polyhedra to higher dimensions.

Definition 34 : A polytope 𝑃 is convex if every point on the line segment connecting any two points
in 𝑃 is also within 𝑃 .

Formally, for all 𝑎, 𝑏 ∈ ℝ𝑛 ∩ 𝑃 , and for all 𝜆 ∈ [0; 1], it holds that 𝜆𝑎 + (1 − 𝜆)𝑏 ∈ 𝑃 .

Note : For an 𝑚 × 𝑛 constraint matrix 𝑨, the set of points 𝑃 = {𝒙 | 𝑨𝒙 ≤ 𝒃} forms a convex polytope in
𝑛-dimensional space.

LP goal: find a point 𝒙 inside the polytope that maximizes 𝒄𝑇 𝒙 for a given 𝒄.

Note : LP is infeasible iff the polytope is empty.

Note : LP is unbounded iff the polytope is open in the direction of the objective function.

Note : The optimal solution for a bounded LP lies on a vertex of the polytope.

54 / 72

Satisfiability as Linear Programming
Our goal is to use LP to check the satisfiability of sets of linear 𝒯RA-literals.

Step 1: Convert equialities to inequalities.

• A linear 𝒯RA-equiality can be written to have the form 𝒂𝑇 𝒙 = 𝒃.
• We rewrite this further as 𝒂𝑇 𝒙 ≥ 𝒃 and 𝒂𝑇 𝒙 ≤ 𝒃.
• And finally to −𝒂𝑇 𝒙 ≤ −𝒃 and 𝒂𝑇 𝒙 ≤ 𝒃.

Step 2: Handle inequalities.

• A 𝒯RA-literal of the form 𝒂𝑇 𝒙 ≤ 𝒃 is already in the desired form.
• A 𝒯RA-literal of the form ¬(𝒂𝑇 𝒙 ≤ 𝒃) is transformed as follows:

¬(𝒂𝑇 𝒙 ≤ 𝒃) ⟶ (𝒂𝑇 𝒙 > 𝒃) ⟶ (−𝒂𝑇 𝒙 < −𝒃) ⟶ (−𝒂𝑇 𝒙 + 𝑦 ≤ −𝒃), (𝑦 > 0)

where 𝑦 is a fresh variable used for all negated inequalities.

Example : ¬(2𝑥1 − 𝑥2 ≤ 3) rewrites to −2𝑥1 + 𝑥2 + 𝑦 ≤ −3, 𝑦 > 0
• If there are no negated inequalities, add the inequality 𝑦 ≤ 1, where 𝑦 is a fresh variable.

55 / 72

Satisfiability as Linear Programming [2]
• In either case, we end up with a set of the form 𝒂𝑇 𝒙 ≤ 𝒃 ∪ {𝑦 > 0}

Step 3: Check the satisfiability of 𝒂𝑇 𝒙 ≤ 𝒃 ∪ {𝑦 > 0}.

Encode it as LP: maximize 𝑦 subject to 𝒂𝑇 𝒙 ≤ 𝒃.

The final system is satisfiable iff the optimal value for 𝑦 is positive.

56 / 72

Methods for Solving LP
• Simplex (Dantzig, 1947) — exponential time 𝒪(2𝑛)
• Ellipsoid (Khachiyan, 1979) — polynomial time 𝒪(𝑛6)
• Projective (Karmarkar, 1984) — polynomial time 𝒪(𝑛3.5)
• And many more tricky algorithms approaching 𝒪(𝑛2.5)

Note : Although the Simplex method is the oldest and the least efficient in theory, it can be implemented to
be quite efficient in practice. It remains the most popular and we will focus on it next.

57 / 72

Standard Form
Any LP can be transformed to standard form:

maximize ∑
𝑛

𝑗=1
𝑐𝑗𝑥𝑗

such that ∑
𝑚

𝑗=1
𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 for 𝑖 = 1, …, 𝑚

𝑥𝑗 ≥ 0 for 𝑗 = 1, …, 𝑛

Example : Next, we are going to use the following running example LP:

maximize 5𝑥1 + 4𝑥2 + 3𝑥3

such that

{{
{{
{{
{2𝑥1 + 3𝑥2 + 𝑥3 ≤ 5

4𝑥1 + 𝑥2 + 2𝑥3 ≤ 11
3𝑥1 + 4𝑥2 + 2𝑥3 ≤ 8
𝑥1, 𝑥2, 𝑥3 ≥ 0

58 / 72

Slack Variables
• Observe the first inequality: 2𝑥1 + 3𝑥2 + 𝑥3 ≤ 5
• Define a new variable to represent the slack:

𝑥4 = 5 − 2𝑥1 − 3𝑥2 − 𝑥3, 𝑥4 ≥ 0
• Do this for each constraint, so that everything becomes equalities.
• Define a new variable to represent the objective value: 𝑧 = 5𝑥1 + 4𝑥2 + 3𝑥3

max 5𝑥1 + 4𝑥2 + 3𝑥3

s.t.

{{
{{
{{
{2𝑥1 + 3𝑥2 + 𝑥3 ≤ 5

4𝑥1 + 𝑥2 + 2𝑥3 ≤ 11
3𝑥1 + 4𝑥2 + 2𝑥3 ≤ 8
𝑥1, 𝑥2, 𝑥3 ≥ 0

max 𝑧

s.t.

{{
{{
{
{{
{{𝑥4 = 5 − 2𝑥1 − 3𝑥2 − 𝑥3

𝑥5 = 11 − 4𝑥1 − 𝑥2 − 2𝑥3
𝑥6 = 8 − 3𝑥1 − 4𝑥2 − 2𝑥3
𝑧 = 5𝑥1 + 4𝑥2 + 3𝑥3
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 ≥ 0

Note : Optimal solution remains optimal for the new problem.

59 / 72

The Simplex Strategy
• Start with a feasible solution.

‣ For our example, assign 0 to all variables.
𝑥1 ↦ 0, 𝑥2 ↦ 0, 𝑥3 ↦ 0

‣ Assign the introduced variables their computed values.
𝑥4 ↦ 5, 𝑥5 ↦ 11, 𝑥6 ↦ 8, 𝑧 ↦ 0

• Iteratively improve the objective value.
‣ Go from 𝒙 to 𝒙′ only if 𝑧(𝒙) ≤ 𝑧(𝒙′).

{{
{{
{{
{𝑥4 = 5 − 2𝑥1 − 3𝑥2 − 𝑥3

𝑥5 = 11 − 4𝑥1 − 𝑥2 − 2𝑥3
𝑥6 = 8 − 3𝑥1 − 4𝑥2 − 2𝑥3
𝑧 = 5𝑥1 + 4𝑥2 + 3𝑥3

What can we improve here?

One option is to make 𝑥1 larger, leaving 𝑥2 and 𝑥3 unchanged:
• 𝑥1 = 1 ⟶ 𝑥4 = 3, 𝑥5 = 7, 𝑥6 = 1, 𝑧 = 5 ✓
• 𝑥1 = 2 ⟶ 𝑥4 = 1, 𝑥5 = 3, 𝑥6 = 2, 𝑧 = 10 ✓
• 𝑥1 = 3 ⟶ 𝑥4 = −1, … ✗ no longer feasible!

60 / 72

The Simplex Strategy [2]
We can’t increase 𝑥1 too much. Let’s increase it as much as possible, without compromising feasibility.

𝑥1 ↦ 0, 𝑥2 ↦ 0, 𝑥3 ↦ 0

{{
{{
{{
{𝑥4 = 5 − 2𝑥1 − 3𝑥2 − 𝑥3

𝑥5 = 11 − 4𝑥1 − 𝑥2 − 2𝑥3
𝑥6 = 8 − 3𝑥1 − 4𝑥2 − 2𝑥3
𝑧 = 5𝑥1 + 4𝑥2 + 3𝑥3

{{
{{
{{
{𝑥1 ≤ 5

2
𝑥1 ≤ 11

4
𝑥1 ≤ 8

3

Select the tightest bound, 𝑥1 ≤ 5
2 .

• New assignment: 𝑥1 ↦ 5
2 , 𝑥2 ↦ 𝑥3 ↦ 𝑥4 ↦ 0, 𝑥5 ↦ 1, 𝑥6 ↦ 1

2 , 𝑧 ↦ 25
2

• This indeed improves the objective value 𝑧.

61 / 72

The Simplex Strategy [3]
Current assignment:
• 𝑥1 ↦ 5

2 , 𝑥2 ↦ 𝑥3 ↦ 𝑥4 ↦ 0, 𝑥5 ↦ 1, 𝑥6 ↦ 1
2 , 𝑧 ↦ 25

2

How do we continue?

For the first iteration we had:
• A feasible solution.
• An equation system where the variables with positive values

are expressed in terms of variables with 0 value.

{{
{{
{{
{𝑥4 = 5 − 2𝑥1 − 3𝑥2 − 𝑥3

𝑥5 = 11 − 4𝑥1 − 𝑥2 − 2𝑥3
𝑥6 = 8 − 3𝑥1 − 4𝑥2 − 2𝑥3
𝑧 = 5𝑥1 + 4𝑥2 + 3𝑥3

Does the current equation system satisfy this property? No ✗

62 / 72

The Simplex Strategy [4]

𝑥1 ↦ 5
2
, 𝑥2 ↦ 𝑥3 ↦ 𝑥4 ↦ 0

{{
{{
{{
{𝑥4 = 5 − 2𝑥1 − 3𝑥2 − 𝑥3

𝑥5 = 11 − 4𝑥1 − 𝑥2 − 2𝑥3
𝑥6 = 8 − 3𝑥1 − 4𝑥2 − 2𝑥3
𝑧 = 5𝑥1 + 4𝑥2 + 3𝑥3

What should we change?
• Initially, 𝑥1 was 0 and 𝑥4 was positive.
• Now, 𝑥1 is positive and 𝑥4 is 0.

Isolate 𝑥1 and eliminate it from right-hand-side:
• 𝑥4 = 5 − 2𝑥1 − 3𝑥2 − 𝑥3 ⟶ 𝑥1 = 5

2 − 3
2𝑥2 − 1

2𝑥3 − 1
2𝑥4

{{
{{
{{
{𝑥4 = 5 − 2𝑥1 − 3𝑥2 − 𝑥3

𝑥5 = 11 − 4𝑥1 − 𝑥2 − 2𝑥3
𝑥6 = 8 − 3𝑥1 − 4𝑥2 − 2𝑥3
𝑧 = 5𝑥1 + 4𝑥2 + 3𝑥3 {

{
{
{
{
{
{𝑥1 = 5

2 − 3
2𝑥2 − 1

2𝑥3 − 1
2𝑥4

𝑥5 = 1 + 5𝑥2 + + 2𝑥4
𝑥6 = 1

2 + 1
2𝑥2 − 1

2𝑥3 + 3
2𝑥4

𝑧 = 25
2 − 7

2𝑥2 + 1
2𝑥3 − 5

2𝑥4

63 / 72

The Simplex Strategy [5]

𝑥1 ↦ 5
2
, 𝑥2 ↦ 0, 𝑥3 ↦ 0, 𝑥4 ↦ 0

{
{
{
{
{
{
{𝑥1 = 5

2 − 3
2𝑥2 − 1

2𝑥3 − 1
2𝑥4

𝑥5 = 1 + 5𝑥2 + + 2𝑥4
𝑥6 = 1

2 + 1
2𝑥2 − 1

2𝑥3 + 3
2𝑥4

𝑧 = 25
2 − 7

2𝑥2 + 1
2𝑥3 − 5

2𝑥4

How can we improve 𝑧 further?
• Option 1: decrease 𝑥2 or 𝑥4, but we can’t since 𝑥2, 𝑥4 ≥ 0.
• Option 2: increase 𝑥3. By how much?

𝑥3’s bounds: 𝑥3 ≤ 5, 𝑥3 ≤ ∞, 𝑥3 ≤ 1.

We increase 𝑥3 to its tightest bound 1.
• New assignment: 𝑥1 ↦ 2, 𝑥2 ↦ 0, 𝑥3 ↦ 1, 𝑥4 ↦ 0, 𝑥5 ↦ 0, 𝑥6 ↦ 0.
• This gives 𝑧 = 13, which is again an improvement.

As before, we switch 𝑥6 and 𝑥3, and eliminate 𝑥3 from the right-hand-side:

{
{
{
{
{
{
{𝑥1 = 5

2 − 3
2𝑥2 − 1

2𝑥3 − 1
2𝑥4

𝑥5 = 1 + 5𝑥2 + + 2𝑥4
𝑥6 = 1

2 + 1
2𝑥2 − 1

2𝑥3 + 3
2𝑥4

𝑧 = 25
2 − 7

2𝑥2 + 1
2𝑥3 − 5

2𝑥4 {{
{{
{{
{𝑥1 = 2 − 2𝑥2 − 2𝑥4 + 𝑥6

𝑥5 = 1 + 5𝑥2 + 2𝑥4
𝑥3 = 1 + 𝑥2 + 3𝑥4 − 2𝑥6
𝑧 = 13 − 3𝑥2 − 𝑥4 − 𝑥6

64 / 72

The Simplex Strategy [6]
𝑥1 ↦ 2, 𝑥2 ↦ 0, 𝑥3 ↦ 1,
𝑥4 ↦ 0, 𝑥6 ↦ 0

{{
{{
{{
{𝑥1 = 2 − 2𝑥2 − 2𝑥4 + 𝑥6

𝑥5 = 1 + 5𝑥2 + 2𝑥4
𝑥3 = 1 + 𝑥2 + 3𝑥4 − 2𝑥6
𝑧 = 13 − 3𝑥2 − 𝑥4 − 𝑥6

Can we improve 𝑧 again?
• No, because 𝑥2, 𝑥4, 𝑥6 ≥ 0, and

all appear with negative signs in the objective function.

So, we are done, and the optimal value of 𝑧 is 13.

The optimal solution is then 𝑥1 ↦ 2, 𝑥2 ↦ 0, 𝑥3 ↦ 1.

65 / 72

The Simplex Algorithm

maximize ∑
𝑛

𝑗=1
𝑐𝑗𝑥𝑗

such that ∑
𝑚

𝑗=1
𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 for 𝑖 = 1, …, 𝑚

𝑥𝑗 ≥ 0 for 𝑗 = 1, …, 𝑛

1. Introduce slack variables 𝑥𝑛+1, …, 𝑥𝑛+𝑚.
2. Set 𝑥𝑛+𝑖 = 𝑏𝑖 − ∑𝑛

𝑗=1 𝑎𝑖𝑗𝑥𝑗 for 𝑖 = 1, …, 𝑚.
3. Start with initial, feasible solution. (commonly, 𝑥1 ↦ 0, …, 𝑥𝑛 ↦ 0)
4. While some summands in the current objective function have positive coefficients, update the feasible

solution to improve the objective value. Otherwise, stop.
5. Update the equations to maintain the invariant that all right-hand-side values have value 0.
6. Go to 4.

66 / 72

§7 CDCL(𝒯)

CDCL(𝒯) Architecture

CDCL(𝒯) = CDCL(𝑋) + 𝒯-solver

CDCL(𝑋):
• Very similar to a SAT solver, enumerates Boolean models.
• Not allowed: pure literal rule (and other SAT specific heuristics).
• Required: incremental addition of clauses.
• Desirable: partial model detection.

𝒯-solver:
• Checks the 𝒯-satisfiability of conjunctions of literals.
• Computes theory propagations.
• Produces explanations of 𝒯-unsatisfiability/propagation.
• Must be incremental and backtrackable.

68 / 72

Typical SMT Solver Architecture

assertions

explanations,
conflicts, lemmas,
propagations

SAT Solver
DPLL Core

UF

Arithmetic

Arrays

Bit-Vectors

SAT Solver:
• Only sees Boolean skeleton of a problem.
• Builds partial model by assigning truth values to literals
• Sends these literals to the core as assertions

Core:
• Sends each assertion to the appropriate theory
• Sends deduced literals to other theories/SAT solver
• Handles theory combination

Theory Solvers:
• Check 𝒯-satisfiability

of sets of theory literals
• Incremental
• Backtrackable
• Conflict generation
• Theory propagation

69 / 72

§8 Combining Theories

Motivation
TODO

71 / 72

TODO
theory of arrays 𝒯A
satisfiability proof system for 𝒯A
example of derivation in 𝑅AX
soundness, termination, completeness of 𝑅AX
RDS solver
Bit-vector solver
String solver
LRA
Linear programming
Simplex algorithm
Combination of theories

72 / 72

	First-Order Theories
	Motivation
	First-Order Theories
	Theory Examples
	T-interpretations
	T-satisfiability, T-entailment, T-validity
	FOL vs Theory
	Axiomatization
	Non-Axiomatizable Theories
	Peano Arithmetic
	Presburger Arithmetic
	Completeness of Theories
	Decidability
	Axiomatizability

	Introduction to SMT
	Common Theories in SMT
	From Quantifier-Free Formulas to Conjunctions of Literals
	Theory Solvers
	Theory of Uninterpreted Functions
	Theory of Real Arithmetic
	Theory of Integer Arithmetic
	Theory of Arrays with Extensionality
	Survey of Decidability and Complexity

	Difference Logic
	Difference Logic
	Decision Procedure for DL
	Difference Logic Example

	Equiality
	Theory of Equality with Uninterpreted Functions
	Flattening
	Notation and Assumptions
	Satisfiability Proof System for QF_UF
	Example Derivation in RUF
	Soundness of RUF
	Termination in RUF
	Completeness of RUF

	Arrays
	Theory of Arrays
	Example
	Satisfiability Proof System for QF_AX
	Example Derivation in RAX

	Arithmetic
	Theory of Real Arithmetic
	Linear Programming
	Example and Terminology
	Geometric Interpretation
	Satisfiability as Linear Programming
	Methods for Solving LP
	Standard Form
	Slack Variables
	The Simplex Strategy
	The Simplex Algorithm

	CDCL(T)
	CDCL(T) Architecture
	Typical SMT Solver Architecture

	Combining Theories
	Motivation
	TODO

