
Formal Methods in Software Engineering

§1 Annotation
Ever dreamed of writing perfect, bug-free code? In this course, you’ll dive into
the depths of formal methods: explore propositional and first-order logic, master
SAT and SMT solvers, and discover the fundamentals of verification — from
transition systems and Kripke models to specification and temporal logics (LTL,
CTL, ATL). We’ll examine SAT- and BDD-based verification approaches, look at
bounded model checking (BMC) and property-directed reachability (IC3/PDR),
and show how to systematically ensure reliability and correctness (safety and
liveness properties) in complex systems. All theoretical concepts are reinforced
through hands-on examples using academic tools such as NuSMV, Alloy/Forge,
and Dafny, so you can see exactly how research ideas become practical solutions.
This course is ideal for anyone seeking to understand the core principles of
verification and apply them in real projects, aiming for the highest standards of
software quality and reliability.

§2 Learning Outcomes
By the end of the semester, students should be able to:
• Demonstrate fluency in propositional and first-order logic for use in formal

specification.
• Encode verification problems in SAT/SMT formulations and effectively utilize

modern solvers (e.g., Cadical, Z3).
• Model reactive systems using transition systems and Kripke structures, and

specify correctness properties in temporal logics (LTL, CTL, ATL).
• Employ a range of model checking techniques — including SAT-based, BDD-

based, bounded model checking, and IC3/PDR — to verify safety and liveness
properties.

• Use software tools (NuSMV, Alloy/Forge, Dafny) to perform model checking
and automated reasoning on simplified but realistic software systems.

• Critically assess industrial and academic literature on formal verification,
synthesizing insights into a final project or case study presentation.

§3 Prerequisites
Students are expected to have prior exposure to:
• Discrete mathematics (propositional logic, set theory)
• Basic proof techniques (natural deduction)
• Automata theory and formal languages



• At least one programming language

Experience with software engineering or systems design is helpful but not
required.

§4 Course Format
• Lectures: Present theoretical foundations and methods.
• Seminars: Discuss research papers, advanced topics, and industrial cases.
• Assignments: Reinforce core concepts via problem sets and tool-based labs.
• Project: Undertake a substantial verification or modeling task.
• Exam: Assess understanding of theoretical and applied aspects of formal

methods.

§5 Course Structure
5.1. Overview
• Introduction to Formal Methods: Motivation, applications, and core con-

cepts.

5.2. Propositional Logic
• Content: Syntax, semantics, normal forms (CNF), tautologies, satisfiability.
• Applications: Encoding simple constraints, forming the basis for SAT solving.
• In-class/Lab: Translating small puzzles or system properties into proposi-

tional logic.

5.3. SAT
• Content: SAT-solving fundamentals, DPLL backtracking, conflict-driven

clause learning (CDCL).
• Tools and Demos: MiniSAT, short solver experiments.
• Assignments: Students encode a small problem (e.g., Sudoku or scheduling)

and run a solver to find solutions or detect unsatisfiability.

5.4. First-Order Logic
• Content: Syntax, semantics, quantifiers, free vs. bound variables, theories in

FOL.
• Deduction in FOL: Natural deduction, sequent calculus (at a high level).
• Relevance: Understanding how real software specifications require more

expressive logic than propositional alone.



5.5. SMT
• Content: Extending SAT to Satisfiability Modulo Theories (linear arithmetic,

arrays, bitvectors).
• Standard Formats: SMT-LIB language for specifying problems.
• Tools and Frameworks: Z3 usage.
• Nelson-Oppen Framework: Combining theories for more complex verifica-

tions.

5.6. Model Checking
• Transition Systems and Kripke Structures: Modeling program states,

transitions, labeling atomic propositions.
• Temporal Logics: Safety, liveness, fairness; LTL, CTL, ATL for specifying

system properties.
• NuSMV Tutorial: Creating models, writing properties, interpreting coun-

terexamples.
• Alloy / Forge: Relational modeling, generating instances or counterexamples.
• Dafny: A language+tool that integrates specification, verification, and proof-

like checks.

5.7. Advanced Model Checking Techniques
• SAT-based Model Checking: Bounded model checking (BMC) with un-

rolling.
• BDD-based Model Checking: Using binary decision diagrams for state-

space representation.
• k-Induction and Inductive Invariants: Proving properties beyond a fixed

bound.
• IC3 / PDR: Incremental construction of inductive proofs, property-directed

reachability.
• Comparisons and Trade-Offs: When each technique excels or struggles.

§6 Projects and Assignments
Students will complete:
1. Lab Exercises: Applying each method or tool in small-scale examples — e.g.,

encoding a puzzle in SAT, verifying a simple concurrency protocol in NuSMV,
exploring an Alloy model.

2. Major Course Project: A deeper verification or specification task selected
from instructor-provided ideas (e.g., verifying a distributed cache algorithm
in NuSMV or Alloy, experimenting with Dafny for array safety proofs).



3. Literature Reviews and Presentations: Groups research an industrial or
academic use of formal methods (e.g., hardware verification at Intel, flight
software checks at NASA). They present both the methodology and lessons
learned.

§7 Grading and Evaluation
Homework (20%) Review (20%) Project (30%) Exam (20%) Participation (10%)

7.1. Homework Assignments (20%)
Assignments focusing on each logic or tool introduced.

7.2. Literature Review & Presentation (20%)
Students analyze a real case study, synthesizing insights from papers or technical
reports.

7.3. Term Project (30%)
A substantial modeling/verification effort that integrates multiple techniques
from the course. Includes a written report and final presentation.

7.4. Final Exam (20%)
Tests both theoretical understanding (logic, model checking principles) and tool-
based reasoning (e.g., how to encode properties in NuSMV).

7.5. Participation (10%)
Evaluates discussion contributions, attendance, engagement in peer reviews, and
collaboration in labs.

§8 Course Policies
• Standard university policies on academic integrity, attendance, and accommo-

dations apply.
• Students are encouraged to regularly collaborate and discuss concepts, but all

submitted work must be their own unless explicitly stated otherwise.
• Late submissions will be penalized unless prior arrangements are made with

the instructor.

§9 Resources
Lecture notes, slides, and additional readings will be uploaded in the course
GitHub repo: https://github.com/Lipen/formal-methods-course.

https://github.com/Lipen/formal-methods-course


§10 Contacts
…


	Annotation
	Learning Outcomes
	Prerequisites
	Course Format
	Course Structure
	Overview
	Propositional Logic
	SAT
	First-Order Logic
	SMT
	Model Checking
	Advanced Model Checking Techniques

	Projects and Assignments
	Grading and Evaluation
	Homework Assignments (20%)
	Literature Review & Presentation (20%)
	Term Project (30%)
	Final Exam (20%)
	Participation (10%)

	Course Policies
	Resources
	Contacts

