Keyboard shortcuts

Press ← or β†’ to navigate between chapters

Press S or / to search in the book

Press ? to show this help

Press Esc to hide this help

🧠 Test 4 – Formal Logic

πŸ“… Test Details

DetailInformation
WeekWeek 15 (Fall)
CoverageWeeks 11–15
Duration90 minutes
TopicsPropositional logic, natural deduction, predicate logic, quantifiers, syllogisms

πŸ“š Topics Covered

  • Propositional logic (syntax and semantics)
  • Natural deduction proofs
  • Logical equivalence and consequence
  • Predicate logic basics
  • Quantifiers (universal and existential)
  • Categorical logic and syllogisms

🎯 Sample Problem Types

  • Tautologies: Determine if given formula is a tautology
  • Proofs: Prove arguments using natural deduction
  • Equivalence: Show logical equivalences using truth tables
  • Translation: Translate English sentences to predicate logic
  • Validity: Determine if arguments are valid
  • Syllogisms: Analyze classical syllogisms

πŸ“– Preparation Guide

Review Materials

  1. Lecture Notes: Module 4 (Formal Logic)
  2. Homework: HW 4
  3. Textbook: Kenneth Rosen

Practice Problems

  • Tautologies: Test 10–15 formulas using truth tables
  • Proofs: Complete natural deduction proofs for common theorems
  • Equivalences: Show logical equivalence for 5–10 pairs
  • Translation: Convert 20+ English sentences to predicate logic
  • Quantifiers: Negate complex quantified formulas
  • Syllogisms: Analyze validity of classical argument forms

Common Pitfalls

⚠️ Watch Out!

  • Quantifier negation: \( \neg \forall x ~ P(x) \) means β€œthere exists \(x\) such that \( \neg P(x) \)”
  • Scope matters in predicate logic
  • In proofs: justify every step with a rule name
  • Translation: β€œonly” is not the same as β€œall” (contrapositive!)
  • Syllogisms: check for fallacies (undistributed middle, etc.)

πŸ’‘ Pro Tips

  • Truth tables work – when unsure about tautology, build the table
  • Proof strategy – work backwards from conclusion to find needed steps
  • Name your rules – explicitly cite modus ponens, ∧-intro, etc.
  • Quantifier scope – use parentheses to clarify scope clearly
  • Practice translation – β€œall”, β€œsome”, β€œno”, β€œonly” have precise meanings
  • Check validity – valid argument = impossible for premises true and conclusion false